YAG レーザ溶接機 ML-2050A/2051A/2150A

取扱説明書

M0622 ML-(2050A/2051A/2150A)-J34-202308

本書の使い方

このたびは、弊社の製品をお買い求めいただき、まことにありがとうございます。 この取扱説明書は、操作方法および使用上の注意事項を記載してあります。ご使用の前に、 この取扱説明書をよくお読みになり、正しくお使いください。また、お読みになった後は、 いつでも見られる場所に保管してください。

本書は「概要編」「設置・準備編」「操作編」「メンテナンス編」の4 編と「付録」から構 成されています。初心者の方は「概要編」から一通りお読みになることをお勧めします。 それにより、装置の全体像や基本的な仕組みを理解でき、レーザ溶接の操作方法がわか ります。

すでにご利用経験のある方は、知りたいことを目次から探して、必要なページを参照し てください。

本書の構成と主な内容

- 概要編 装置の概要と機能を説明しています。YAG レーザ装置について、基本的な仕 組みと本装置の機能の概要を説明し、オプションを含めた製品の構成を説明 しています。レーザ装置の仕組みや機能、製品の構成を知り、各部の名称や 働きについて知ることができます。
- 設置・準備編 設置と各部の接続方法などの準備作業を説明しています。
- 操作編 レーザ溶接の操作を説明しています。最初に各種の設定方法、次に操作の方法を説明しています。レーザ溶接の操作方法は、3種類の制御(操作パネルによる制御、外部入出力信号による制御、外部通信制御による制御)を説明しています。
- メンテナンス編 メンテナンスのしかたおよびトラブル時の処理について説明しています。
- 付録 参考資料として、仕様、外形寸法図、パルス幅最大出力特性、タイムチャート、 用語解説があります。出力条件データ記入表は、登録したレーザ出力条件デー タを記入してご利用いただけます。

目次

本書の使い方 2
安全にお使いいただくために
安全上のご注意6
取扱上のご注意
レーザ安全管理者9
日常の取り扱いについて9
運搬時には10
廃棄時には11
警告・危険シールの貼付について12

概要編

15

33

第1章 YAG レーザ溶接機の概要17
1. YAG レーザとは
2. YAG レーザ装置の仕組み18
3. ML-2050A/2051A/2150A の機能19
4. 製品の構成
梱包について
梱包品の確認20
オプション品
第2章 各部の名称と働き25
1. 前面各部の名称と働き
前面カバー部25
前面内部
2. 上面各部の名称と働き
上面カバー部28
操作パネル
レーザ発振部
3. 側面・背面各部の名称と働き32

設置・準備編

第1章 設置について	35
1. 設置場所について	35
据付けに必要なスペース	35
設置に適した環境とご注意	37
2. 冷却水について	38
冷却能力と室温についてのご注意	39
第2章 各部の接続と準備	41
1. 電源の接続	41
2. 冷却水の準備	42
3. 光ファイバの接続	43
4. レーザコントローラ(オプション)の接続	46
5. 外部通信用変換アダプタ(オプション)の接続	47

操作編	49
第1章 制御方法・起動と終了	51
1. 制御方法	51
制御方法の切り替え	51
2. 起動と終了	52
起動のしかた	52
終了のしかた	52
第2章 各種の設定	53
1. 溶接条件の設定	53
溶接条件の設定画面について	53
レーザ光の出力条件を設定する(SCHEDULE 画面)	61
出力状態を設定する(STATUS 画面)	65
出力状況確認画面を設定する(POWER MONITOR 画面)	69
設定値を保護する(PASSWORD 画面)	71
レーザエネルギー測定値(J)の精度を切り替える(INITIAL 画面).	74
パルス幅の設定範囲を切り替える(INITIAL 画面)	76
2. レーザ光の分岐設定	78
レーザ光の分岐について	78
STATUS 画面で分岐を操作する	80
分岐シャッタを独立制御する	81
3. レーザスタート信号・条件信号受付時間の変更	83
4. ファイバセンサ付き出射ユニット(オプション)の機能設定	85
第3章 操作パネルによるレーザ溶接(PANEL CONTROL)	87
1. 操作の流れ	
2. 操作パネルの機能	
3. 操作手順	
第4章 外部入出力信号によるレーザ溶接(EXTERNAL CONTROL)	97
1. 操作の流れ	
2. 操作の準備	98
3. コネクタの機能	99
ピンの配置と機能	
外部入力信号の接続例	107
外部出力信号の接続例	109
4. プログラミング	
第5章 外部通信制御によるレーザ溶接(RS-485 CONTROL)	115
1. 操作の流れ	115
2. 操作の準備	116
3. 初期設定	117
通信条件を設定する	117
装置 No. を設定する	119
4. コマンド	121
データを設定する	123
アータを読み出す	124
耐御力法・SUHEDULE 番号・分岐ンヤツタなどを設定する	129
可间刀岐ユーツトのミフーを設定する	130

制御方法・SCHEDULE 番号・分岐シャッタなどを読み出す131
時間分岐ユニットのステータスを読み出す
レーザ光出力をスタートする132
レーザ光出力をストップする133
異常信号の出力を停止する133
総出力回数をリセットする134
適正出力回数をリセットする134
トラブル時の異常 No. を読み出す134
第6章 設定値・測定値の印刷137
1. 設定値の印刷
2. 測定値の印刷

メンテナンス編

141

第1章	メンテナンスのしかた	143
ごど	主意	143
1.1	呆守部品と点検・交換の目安	143
2.	クーラユニット部のメンテナンス	146
	エアフィルタのクリーニングをする	146
	冷却水タンクの水抜きをする	147
	イオン交換樹脂詰め替え・イオン交換器の交換をする	148
	水フィルタのクリーニングをする	
	レーザチャンバその他の水抜きをする	152
3.	レーザ発振部のメンテナンス	
	フラッシュランプを交換する	
	光ファイバの入射調整をする	
	出射ユニット光学部品のクリーニングをする	
	光ファイバのクリーニングをする	158
4. 1	電源部のメンテナンス	
	バックアップ用リチウム電池を交換する	
	操作パネル制御基板の電池を交換する	
	エアフィルタのクリーニングをする	
第2章	異常発生時の点検と処置	
1. 5	異常表示と処置の方法	
	インタロック解除の動作	
2. 4	異常が表示されない場合の処置	

付録

	仕様	.171
	外形寸法図	.173
	使用可能出力	.174
	タイムチャート	.176
	用語解説	.182
	出力条件データ記入表	.187
索引		. 191

169

安全にお使いいただくために

安全上のご注意

ご使用の前に「安全上のご注意」をよくお読みになって、正しくお使いください。

ここに示した注意事項は、製品を安全にお使いいただき、使用者や他の人々への危害や 損害を未然に防止するためのものです。いずれも安全に関する重要な内容ですので、必 ずお読みください。

図記号の意味

<u> </u> 危険	取り扱いを誤った場合、人が死亡または重傷を負う危険が切迫して 生じることが予想されるもの。
▲ 警告	取り扱いを誤った場合、人が死亡または重傷を負う可能性が想定されるもの。
▲ 注意	取り扱いを誤った場合、人が傷害を負う危険が想定されるものおよ び物的損害の発生が想定されるもの。
\otimes \otimes \otimes \otimes	「禁止」を表します。製品の保証範囲外の行為についての警告です。
00	製品をお使いになる方に、必ず行ってほしい行為を表します。
A	危険・警告・注意を促す内容があることを表します。

こげ臭い・変な音がする・非常に熱くなる・煙が出る、などの異常が現れたまま 運転を続けると、感電や火災の原因となります。すぐにお買い上げの販売店また は当社までご連絡ください。

接地をする 接地をしていないと、故障や漏電のときに感電する恐れがあります。

ストッパを使う

レーザ光が人に当たると危険です。メンテナンス時にレーザ光を出力する場合は、 ストッパ(高温に耐える光の吸収・散乱体)を使い、レーザ光がストッパより先 へ照射するのを防いでください。

ペースメーカを使用の方は近づかない

心臓のペースメーカを使用している方は、医師の許可があるまで操作中の溶接機 や溶接作業場所の周囲に近づかないでください。溶接機は、通電中に磁場を発生し、 ペースメーカの作動に悪影響を及ぼします。

保守点検を定期的に実施する 保守点検を定期的に実施して、損傷した部分・部品は修理してから使用してくだ さい。

取扱上のご注意

レーザ安全管理者

- ⇒ レーザ光・レーザ装置の取り扱いについて十分な知識と経験を有する方をレーザ安 全管理者としてください。
- ⇒ レーザ安全管理者は、本体の CONTROL キースイッチのキーを管理し、レーザ取扱 作業者に対して安全知識を周知させ、作業指揮をとるようにしてください。
- ⇒ レーザ光にさらされる恐れのある区域は、囲いを設けるなどして、区画をしてください。また、この区域は責任者が管理し、関係者以外の方が入らないように、標識を明示してください。

日常の取り扱いについて

- ⇒ メンテナンス編第1章「1.保守部品と点検・交換の目安」P.143を参照し、定期的 に点検してください。
- ⇒ 製品外部の汚れは、柔らかい布または水を少し含ませた布で拭いてください。汚れがひどいときは、中性洗剤を薄めたものか、アルコールで拭き取ってください。シンナーやベンジンなどは、変色や変形の恐れがあるので、使用しないでください。
- ⇒ 本体内部にネジなどの異物を入れると、故障の原因となるので、おやめください。
- ⇒ スイッチ・ボタン類は、手で丁寧に操作してください。乱暴な操作、ドライバやペン先での操作は、故障や破損の原因となります。
- ⇒ スイッチ・ボタン類の操作は1回に1つずつ行ってください。同時に複数のスイッ チを切り替えたりボタンを押したりすると、故障や破損の原因となります。
- ⇒ 外板および蓋は、接続線によって本体と電気的に接続されています。外板や蓋を取り外した後、元に戻す際は、必ず接続線を接続し直してください。また、接続線が発振器部の光路を妨げたり、外板とフレームの間に挟まれたりしないように注意してください。
- ⇒ 光ファイバは、最小曲げ半径以下に曲げたり、強いショックを与えたりすると、破損し使用できなくなります。

コア径	最小曲げ半径
φ 0.2、0.3、0.4mm	100mm
φ 0.6mm	150mm
φ 0.8mm	200mm
φ 1.0mm	250mm

光ファイバ最小曲げ半径

- ⇒ レーザを使用する区域に管理者や作業者が立ち入る場合は、MPE* 値以下となるような危険防止策が必要です。
 - * MPE:最大許容露光量。レーザ光が目に入ったり皮膚に当たったときに許容できる安全なレベル。 Maximum Permissive Exposure の略。

※ その他、レーザ管理および MPE 値についての詳細は、次の規格を参考にしてください。
 日本産業規格 JIS C 6802「レーザ製品の安全基準」
 厚生労働省通達 基発第 0325002 号「レーザー光線による障害の防止対策について」

運搬時には

- レーザ装置を運搬するときは、危険を回避するため以下の注意事項をお守りください。
- ⇒ レーザ装置を運搬するときは、梱包してください。
- ⇒ 作業者は、ヘルメット・安全靴・手袋(安全上革手袋が望ましい)を着用してください。
- ⇒ 装置の運搬には、許容荷重 100kg 以上のフォークリフト、クレーン、ベルトなどを 使用してください。
- ⇒ フォークリフト、クレーン、ベルトなどで持ち上げるときは、ダンボール下部の木 材A、Bの間で支えるようにしてください。
- ⇒ 平坦な場所での移動は、キャスターを使って運んでください。

廃棄時には

本製品には、ガリウムひ素(GaAs)を含む部品が使用されています。廃棄する場合には、 一般産業廃棄物や家庭ごみと分別し、関係法令に従って廃棄処理を行ってください。

警告・危険シールの貼付について

本装置には、警告・危険を示すシールが貼られています。シールの注意事項をよくお読 みになり、正しくお使いください。番号は次ページのシールの図と対応しています。

上面

本体上面内部(分岐部カバー上面)

本体上面内部(分岐部カバー上面)

本体上面内部(分岐部カバー上面)

本体前面内部(冷却水タンク前面)

本体上面内部 (レーザチャンバ上面)

本体前面内部(冷却水タンク上面)

1. YAG レーザとは

レーザ (Laser) とは、光 (電磁波) を増幅することにより、強力な光を発生させる装置 またはその光のことです。レーザは光を発生させる物質によってさまざまな種類に分け られます。その中で工業分野の溶接用レーザとして代表的なものが、Nd: YAG レーザで 一般的に YAG レーザと呼ばれます。Nd: YAG レーザは、イットリウム・アルミニウム・ ガーネット (Yttrium Aluminium Garnet) 結晶にネオジウム (Nd) を添加して発生するレー ザであることから、その名が付けられています。

YAG レーザの波長は、人間の目には見えない近赤外線の 1064nm です。レーザ溶接に用 いられるレーザ装置の多くは、JIS で規定されたレーザ製品のクラス分けで、最も危険な クラス 4 レーザに該当します。YAG レーザ光が目に入ると、水晶体で集光され網膜まで 到達するため、失明する恐れがあります。絶対に YAG レーザ光を目で直接見てはいけま せん。ビームも散乱光も危険ですので、見たり触れたりしないでください。

目に見えないレーザが、加工物(ワーク)のどこに照射されるかを確認するため、一般 には赤色ガイド光がレーザ装置に搭載されています。出射ユニットが CCD カメラ付きの 場合は、通常、モニタ上に十字線(クロスライン)が表示され、この十字線の交差した 点が照射位置になります。本装置ではガイド光が出力されると、加工物の上に赤い点が 見えます。 概要編

2. YAG レーザ装置の仕組み

溶接用 YAG レーザ装置は、電源、クーラ、発振器、光ファイバ、出射ユニットなどで構成されています。光ファイバでレーザ光を本体から離れた場所へ伝送できるため、光ファ イバと出射ユニットのみを製造ラインへ組み込んで溶接を行うことができます。また、1 台のレーザ装置から複数本の光ファイバへレーザ光を分岐することができます。

同時分岐

分岐ミラーで1本のレーザ光を複数本に分割することにより、同時に複数のワーク(または1つのワークの複数箇所)を溶接する方法を「同時分岐」といいます。1本のレーザ光のエネルギーを100%とすると、2分岐なら50%のレーザ光が2本の光ファイバから、3分岐なら33%のレーザ光が3本の光ファイバから、同時に照射されます。同時分岐は、本装置では3分岐まで可能です。

時間分岐

1本のレーザ光を分割することなく、100%のエネルギーのまま、時間分岐ユニットのミ ラーで反射角度を変えることにより、複数個のワークを溶接する方法を「時間分岐」と いいます。例えば、3分岐なら3本の光ファイバから1回ずつレーザ光が照射されます。 時間分岐は、本装置では3分岐まで可能です。

概要編

|・準備編

操作編

3. ML-2050A/2051A/2150A の機能

- ⇒ レーザパワーフィードバック制御と任意波形制御機能
 - 32 種類の溶接条件と波形制御により、さまざまなワークに対応できます。
 - ■溶接条件を瞬時に切り替えられるので、高速で高品質な溶接ができます。
 - 細径光ファイバの使用により、小さなスポット径で溶接できます(ML-2051A)。
 - ■レーザ光の出力は、同時分岐・時間分岐を含め、3分岐まで可能です(分岐ミラー・ 分岐シャッタはオプション)。
 - 同時分岐のエネルギーロスがなく、分岐ごとにほぼ均一の出力が得られます。
- ⇒ 簡単な操作やメンテナンス
 - 配線やフィルタ交換などわずらわしい作業が、前面で楽に行えます。
 - ■液晶ディスプレイで溶接条件を入力するので、簡単で正確に操作できます。
 - ■豊富な入出力端子(信号)を備えているので、自動機と簡単に接続できます。
 - レーザエネルギー(J) とその平均パワー(W)の両方をモニタできます。任意の エネルギー値をあらかじめ設定しておくと、レーザエネルギーがその値にならな かった場合、異常信号が出力されるので、充実した品質管理が行えます。
 - ■高精度光ファイバを採用しているので、ファイバ着脱時の光軸調整が不要です。
 - 光ファイバ破断検出機能・光ファイバ装着確認機能により、光ファイバの異常が すぐにわかります。(オプションのファイバセンサ付き出射ユニットが必要です。)
 - 外部通信機能を使用することにより、溶接条件やモニタ値などのデータを集中管理できます。
- ⇒ 省スペース化により工場環境を改善
 - ■レーザ電源・発振ヘッド・クーラが一体化されているので、移動・設置が簡単にできます。
 - ■外部冷却水を使用しないので、配管が不要です。
- ⇒ 「JIS C 6802」および「厚生労働省基発第 0325002 号」に準拠しています。

4. 製品の構成

梱包について

製品は本体と付属品に分けて2つに梱包されています。それぞれの寸法と質量は次のと おりです。

	寸法	質量(梱包品含む)
本体用梱包	約 840 (H) $ imes$ 440 (W) $ imes$ 800 (D) mm	約 76kg
付属品用梱包	約 580 (H) × 310 (W) × 460 (D) mm	約 23kg

梱包品の確認

梱包品がすべて揃っていることを確認してください。

⇒ 付属品の型式は、予告なく変更する場合があります。変更される部品によっては、 取付ネジの形状が変わり、必要な工具が異なることがあります。最新の部品情報に ついては、お近くの営業所にお問い合わせください。

本体用梱包

品名	型式	数量
YAG レーザ溶接機	ML-2050A/2051A/2150A	1

付属品用梱包

品名	型式	数量
フラッシュランプ	MLD-0902	1
ガラス板	A4-00719	1
詰替用イオン交換樹脂	MLF-0020	1
イオン交換樹脂着脱工具	MLF-0005	1
冷却水(精製水、20L)	MLU-0604-00	1
YAG レーザ用保護メガネ	CE YL-717S	1
	BS 2.5mm	1
ボールドライバ	BSL 3mm	1
	BS 4mm	1
給水ポンプ	TP-0002	1
サニメント手袋	エンボスL	2

	型式	数量
	P-00374-001	2
	P-00474-001	2
<i>∆</i> // +⊏	P-0211	2
站权	P-0212	2
	P-0213	2
	P-00377-001	2
銘板	P-1213	1
取扱説明書	AS1011520(M0622)	1
電源ケーブル	A-03651-002	1

本体・光ファイバ・出射ユニット

本製品は、本体1台につき、光ファイバ、出射ユニットを、次の組み合わせで使用します。

ML-2050A/2051A/2150A 本体には、分岐数に応じた数だけ開閉センサ付き分岐シャッ タが内蔵されています。

型式	分岐方法	仕様
ML-2 🗆 5 🗆 A-010	単一	1本の光ファイバに出力
ML-2 🗆 5 🗆 A-020	同時2分岐	2本の光ファイバに同時に出力
ML-2 🗆 5 🗆 A-030	同時3分岐	3本の光ファイバに同時に出力
ML-2 🗆 5 🗆 A-002	時間2分岐	2本の光ファイバのうち1本を任意に選択して出力
ML-2 🗆 5 🗆 A-003	時間3分岐	3本の光ファイバのうち1本を任意に選択して出力

⇒ 光ファイバと出射ユニットについては、それぞれの取扱説明書または仕様書を参照 してください。 概要編

オプション品

次の製品は別売のオプション品です。必要に応じてお買い求めください。

品名		型式
ファイバスコープ		FOS-04
レーザコントローラ		MLE-115A-02-00
回始ケーブル	3m	C18-HD15M-HD15F-10
回称ウーフル	15m	C18-HD15M-HD15F-50
プリンタ		BL2-58SNWJC
		MSC-08S
		MSC-08 センヨウ
RS-485 ケーブル 10m		A-05391-001
RS-232C ケーブル 0.2m		KRS-9F25F02K
端面チェッカー		EC-02(LED)(50)
ファイバセンサ付き出射ユニット		当社までお問い合わせください。

⇒ 別売の保守部品については、メンテナンス編第1章「1.保守部品と点検・交換の目安」 P.143 を参照してください。

ファイバスコープ

光ファイバへの入射の状態を確認するために使います。必要に応じてお買い求めください。

⇒ ファイバスコープをご使用の場合は、下図の斜線の部分を使用しません。この部分 を外してください。斜線の部分は、ネジ止めになっています。

レーザコントローラ

本体から離れた位置で操作するためのコントローラです。3m または 15m の回線ケーブ ルで本体の LASER CONTROLLER コネクタまたは PANEL CONTROL コネクタと接続しま す。必要に応じてお買い求めください。

本体

RS-232C/RS-485 変換アダプタ

外部通信機能によって装置を制御するときに使用する変換アダプタです。パソコンなどの出力信号(RS-232C)をRS-485に変換して本体へ送出します。

概要編

プリンタ

プリンタ(BL2-58SNWJC:三栄電機(株))を RS-485 ケーブルで接続し、各スケジュー ルの出力条件およびモニタ画面の測定値をプリントアウトすることができます。必要に 応じてお買い求めください。

1. 前面各部の名称と働き

前面カバー部

本体前面カバーの各部について説明します。

前面カバー部 各部の機能

① MAIN POWER スイッチ	電源を ON/OFF します。
②前扉	ケーブル類の接続など、メンテナンスを行うときに開きます。
③ 取っ手	前扉の開閉に使用します。 下部にある突起を下にスライドさせると、取っ手が出ます。 前扉を閉めてから取っ手を元の位置に戻すと、前扉がロックします。

概要編

前面内部

メンテナンスを行うときに前扉を開きます。内部の各部について説明します。

前面内部 各部の機能

① 電源入力端子	AC200V/AC220V/AC240V(仕様により異なる)の単相電源、および接 地線を接続します。
② EXT. I/O(1)、(2) コネクタ	異常信号やモニタ判定信号などの出力、起動信号や条件切替信号などの 入力を行うコネクタです。
③ EMERGENCY STOP コネクタ	非常停止の入出力信号用コネクタです。
④ SIGNAL コネクタ	レーザパワーのモニタ波形をアナログ出力するコネクタ(BNCコネクタ) です。オシロスコープに接続して、レーザ出力波形を確認できます。
⑤ RS-485(1) コネクタ	パソコンやプリンタなどと装置を接続するためのコネクタです。
⑥ RS-485(2) コネクタ	パソコンやプリンタなどと装置を接続するためのコネクタです。

⑦ REMOTE INTERLOCK コネクタ	非常時遮断用のリモートインタロックに接続するコネクタです。 このコネクタを開路すると本装置の分岐シャッタが閉じ、レーザ光が出
	力されなくなります。
⑧ PANEL CONTROL コネクタ	工場出荷時は、PANEL CONTROL コネクタと LASER CONTROLLER コ ネクタが短絡ケーブルで接続されています。オプションのレーザコント ローラ使用時は、短絡ケーブルを抜いてください。
 ④ LASER CONTROLLER コネクタ 	オプションのレーザコントローラを接続します。短絡ケーブルを抜いて、 レーザコントローラを接続すると、本装置を離れた場所から操作するこ とができます(本体の操作パネルは使用できなくなります)。
⑩ 短絡ケーブル	工場出荷時は、PANEL CONTROL コネクタと LASER CONTROLLER コネ クタに接続されています。
11) 冷却水タンク	YAG ロッド、フラッシュランプ、電源部を冷却する冷却水を入れます。
② 水位ラベル	冷却水の適正水位を示します。
	冷却水の純度を上げます。

2. 上面各部の名称と働き

上面カバー部

本体上面カバーの各部について説明します。

上面カバー部 各部の機能

①上面カバー	レーザ発振部のカバーです。
 ケーブル取入口 	光ファイバの装着・破断検出用のケーブル (オプション) を通す穴です。 ケーブル取入口に接続された出射ユニットの番号は、図の左から 1,2,3 となります。
③ 光ファイバ取入口	光ファイバを通す穴です。装置背面と上面の2か所にあります。 ゴムキャップが付いているので、必要な数(分岐数)だけ穴を開けて 光ファイバを通し、入射ユニットに接続します。
④ EMERGENCY STOP ボタン	非常停止ボタンです。このボタンを押すと、装置の電源が遮断されま す。一度押したボタンを RESET の方向(右)へ回すと、電源が入ります。
⑤ 操作パネル	溶接条件の設定や装置の操作を行います。 液晶ディスプレイに設定項目や設定値が表示されます。
⑥ CONTROL キースイッチ	MAIN POWER スイッチが ON のときに CONTROL キースイッチを ON にすると、操作が可能になります。装置を使用しないときは、 CONTROL キースイッチを OFF にしてキーを抜いてください。キーは、 レーザ安全管理者が保管してください。
⑦ POWER ランプ	MAIN POWER スイッチを ON にすると点灯し、電源が入ったことを 確認できます。

2. 上面各部の名称と働き

⑧ HIGH VOLTAGE ランプ	レーザ発振部に高電圧がかかると点灯します。
⑨ READY ランプ	コンデンサの充電が完了すると点灯します。
① SHUTTER ランプ (1 ~ 3)	1番から3番までの分岐シャッタが開いている間、対応する番号のラ ンプが点灯します。

操作パネル

操作パネルのボタンやキーについて説明します。

操作パネルでは、溶接条件の設定とレーザ光の出力操作を行います。オプションのレー ザコントローラを接続すると、レーザコントローラの操作パネルを使い、装置から離れ た場所で同じ操作ができます。

操作パネル各部の機能

 ① LASER START/STOP (ボタン) EMISSION (ランプ) 	レーザ出力の準備が完了した状態*でボタンを押すと、レーザが出力さ れます。レーザの繰り返し出力中に再度ボタンを押すと、繰り返し出力 が停止されます。 * EXT.I/O(1) コネクタの 23 番ピン(制御切替)を開路し、高電圧が 供給されて分岐シャッタが開いている状態 レーザ発振部に高電圧がかかると、EMISSION(発射)ランプが点灯し ます。
② MENU (キー)	液晶ディスプレイの画面表示を切り替えます。キーを押すと、SCHEDULE 画面、STATUS 画面、POWER MONITOR 画面の順に画面が切り替わります。
③ ENTER (キー)	設定した数値や ON/OFF の指定を確定します。 データ変更後は、必ず ENTER キーを押して設定値を確定します。確定 しないと、数秒後に設定前の値に戻ります。
④ ON (+) OFF (-) (キー)	設定項目の ON/OFF を指定します。 また、カーソル位置の数値またはアルファベットを昇順(ON キー)ま たは降順(OFF キー)に変更します。
⑤ CURSOR (キー)	画面上でカーソル()を上下左右に移動します。
⑥ TROUBLE RESET (キー)	異常時の処理後、異常表示を解除して画面をリセットします。

レーザ発振部

上面カバーを開けた内部にあるレーザ発振部について説明します。

分岐部カバーの内部

レーザ発振部 各部の機能

 パワーモニタ ユニット 	YAG レーザを検出して、パワーを測定します。
② 共振器ミラー ホルダ	共振器ミラーが入っています。 レーザチャンバで励起された光は、2 つの共振器ミラー間で増幅され、 レーザになります。
③ ガイド光 折り返しミラー	ガイド光(赤色の可視レーザ)が、YAG レーザの光路の中心を通るよう に調整するミラーです。
④ ガイド光発振器	ガイド光(赤色の可視レーザ)を出力します。 溶接用の YAG レーザは目に見えないため、赤色のガイド光を使用して、 発振調整・入射調整・溶接箇所の位置決めなどを行います。
⑤ レーザチャンバ	内部にフラッシュランプと YAG ロッドが入っています。 フラッシュランプを点灯し、YAG ロッドが励起されると、レーザが発生 できる状態になります。
 ⑥ 入射ユニット (オプションで 3 分岐まで) 	光ファイバを接続します。 レーザチャンバで発生したレーザは、入射ユニットを通して光ファイバ に送られます。入射ユニットの数(1 ~ 3)は、仕様により変わります。
⑦分岐部カバー	分岐部のカバーです。光ファイバ着脱時以外は、取り外さないでください。

2. 上面各部の名称と働き

⑧時間分岐ユニット (時間分岐仕様のみ 搭載)	レーザを反射させるミラーが搭載されています。 このミラーが動くことで、選択した光ファイバヘレーザが出力されます。
 ⑨ 分岐シャッタ (オプションで 3 分岐まで) 	分岐シャッタを閉じるとレーザは遮断され、出力されません。 分岐シャッタの数(1~3)は、仕様により変わります。
 ⑩ 分岐ミラー (オプションで 3 分岐まで) 	時間分岐ユニットで反射されたレーザは、さらに分岐ミラーで反射され、 分岐シャッタが開いて入射ユニットへ送られます。 分岐ミラーの数(1 ~ 3)は、仕様により変わります。

概要編

3. 側面・背面各部の名称と働き

側面・背面の各部について説明します。

側面・背面各部の機能

①側面カバー	本体両側面のカバーです。中は電源部とクーラです。
②背面カバー	本体背面のカバーです。中は電源部とクーラです。
③エアフィルタ	空気の取入口にあり、ごみやちりなどが装置内に入るのを防ぎます。 内側には、装置内部冷却用のファンが取り付けられています。

装置の設置場所や条件、および冷却能力と室温についての注意を説明します。

⇒ 本装置据え付け時の調整は当社エンジニアが行いますので、本取扱説明書では立ち 上げ時の調整方法については記載していません。レーザ装置を移設した場合も当社 エンジニアによる点検・再調整が必要となる場合があります。

1. 設置場所について

設置場所に必要なスペースと設置に適した環境について説明します。

本装置はしっかりした場所に設置し、地面に水平な状態にしてお使いください。傾けた り倒したりして使用すると、故障の原因となります。

- ⇒ 電源供給側には、高調波やサージ対応品で、定格電流が15A以上の漏電遮断器をご 使用になることを強くお勧めします。
- ⇒ D 種接地工事(経済産業省「電気設備の技術基準」)を行ってください。

据付けに必要なスペース

本製品の設置場所には周囲にスペースが必要です。次ページの図のように壁から離した 場所に設置してください。なお、メンテナンス時には、前後左右および上方に 500mm 以上のスペースが必要です。

⇒ 空気は下図の赤い矢印のように流れます。空気の流れをさえぎらないように設置してください。

設置に適した環境とご注意

- ⇒ レーザで加工する場合、ワーク(加工物)から粉塵やヒュームなどが発生します。ワークの種類によっては、これらが人体に悪影響を及ぼす場合があります。また、ワークからの粉塵やヒュームなどは光学部品の汚損や焼損を発生させ、レーザ出力を低下させる恐れがあります。さらに、導電性の塵埃がレーザ装置内部に侵入した場合には、短絡事故を発生させ、故障の原因となる恐れがあります。したがって、レーザで加工する場合、必ず適切な位置に集塵機やブロアなどの排気装置を設置して、 清浄な環境にしてください。
- ⇒ 周囲温度 5~30℃、周囲湿度 85% RH 以下の、急激に温度が変化しない場所で使用してください。グラフで示すよりも湿度が高いと、結露することがあります。

⇒ 次のような場所での使用は、故障の原因となりますので避けてください。

- ■ちり、ほこり、オイルミストの多い場所
- ■振動や衝撃の多い場所
- ■薬品などを扱う場所
- 強いノイズ発生源が近くにある場所
- 結露するような場所
- CO2 NOx SOx などの濃度が高い場所(CO2 濃度 0.1% 以上の場所では、イオン交換樹脂の寿命が短くなる場合があります。)
- ⇒ 冬などに、気温が 0℃以下になると冷却水が凍結して、装置が破損することがあります。特に寒冷地では凍結しやすいため、0℃以下の環境にならないようにご注意ください。1 か月以上使用しない場合や 0℃以下になる場合は、完全に冷却水の水抜きを行う必要があります。水抜きの方法は、メンテナンス編第1章「2. クーラユニット部のメンテナンス」P.146、151 を参照してください。
- ➡ 暖房始動時などの急激な温度変化があった場合、YAG ロッド端面やミラー表面が結 露し、ゴミが付着したりくもりが生じたりします。急激な温度変化は、できるだけ 避けてください。結露の可能性がある場合は、装置の電源を入れて2時間ほどたっ てから運転を開始してください。

操作編

2. 冷却水について

レーザ発振部にあるレーザチャンバ内のフラッシュランプおよび YAG ロッドを冷やすた めに、冷却水を使用します。イオン交換水または精製水をご使用ください。水道水・工 業用水・地下水・超純水(抵抗率 16MΩ・cm 以上)などを使うと、腐食や目詰まりを起 こし、故障の原因となります。

冷却能力と室温についてのご注意

以下は、本装置の使用率と冷却能力(室温の上限)の関係を表したグラフです。 冷却能力ラインを超えると、エラー No.10/HIGH TEMPERATURE OF COOLANT(冷却水 温度過大)が発生します。また、装置仕様の 5 ~ 30℃の範囲を超える室温や、このグラ フの範囲内であっても、レーザ定格出力を超える条件では使用しないでください。 この使用率は、フラッシュランプが点灯していない休止時間を含めた LAMP INPUT PWR の平均値を示します。LAMP INPUT PWR は POWER MONITOR 画面に表示されます。

使用率が100%未満では、次のようになります。

例1 LAMP INPUT PWR が 100% で、「7 秒間出力して 3 秒間休止」を繰り返した場合
 (1 サイクルは 10 秒)
 使用率= 100 × 7 / 10 = 70%

グラフで使用率が 70% のとき → 室温 約 25℃ 冷却能力を十分に発揮させるには、室温を 25℃以下にしてお使いください。

例2 LAMP INPUT PWR が 80% で、「3 秒間出力して 2 秒間休止」を繰り返した場合
 (1 サイクルは 5 秒)
 使用率= 80 × 3 / 5 = 48%
 グラフで使用率が 48% のとき → 室温約 28℃

冷却能力を十分に発揮させるには、室温を 28℃以下にしてお使いください。

設置・準備編

1. 電源の接続

電源供給側には、高調波やサージ対応品で、定格電流が15A以上の漏電遮断器をご使用になることを強くお勧めします。

※単相ポンプを使用しています。インバータ電源の出力には繋がないでください。

準備するもの

+ドライバ

作業手順

(1) 前扉を開けて、電源入力端子 AC200V/AC220V/AC240V(仕様により異なる)を 覆っているプラスチックカバーを外します。

(2) 付属の電源ケーブルを、本体底板の穴から引き入れます。

(3) 電源ケーブルの色を確認しながら、PE(黄/緑)、L(R)茶、N(S)青の電源入力端子に接続します。

2. 冷却水の準備

冷却水は、イオン交換水または精製水をご使用ください。水道水・工業用水・地下水・超 純水(抵抗率16MΩ・cm以上)を使用すると、腐食や目詰まりを起こし、故障の原因と なります。

準備するもの

冷却水(6ℓ)/給水ポンプ

作業手順

(1) 前扉を開け、冷却水タンクの蓋を外します。

- (2) タンクの中の落とし蓋を取り出します。
- ⇒ 落とし蓋に汚れが付着しないよう注意してください。
- (3) 付属の給水ポンプで、冷却水を水位ラベルの「HIGH」の下の線まで入れます。
- ⇒ 給水ポンプは冷却水専用とし、灯油など他の用途には使用しないでください。
- (4) 落とし蓋を水面に浮かせ、冷却水タンクの蓋を元どおりに取り付けます。
- ⇒ 落とし蓋は繰り返し使用できます。汚れた場合は、柔らかいスポンジを使用して水 道水で軽く洗い、最後にイオン交換水または精製水ですすいでから使用してください。
- ⇒ 給水後、最初にクーラを稼働させるとき、水位が若干下がることがあります。その 場合は、再度冷却水を補給してください。なお、冷却水を補給するときは、必ず落 とし蓋を取り出してください。

設置・準備編

操作編

第 2 章

各部の接続と準備

3. 光ファイバの接続

光ファイバの接続方法について説明します。

本装置は、高精度タイプの光ファイバを採用しています。いったん入射光軸を調整すれば、 着脱した後に再び光軸調整をする必要がありません。

接続の前に

接続前に光ファイバの端面を確認し、汚れやほこりがあるときは、エアブローで吹き飛 ばすか、レンズクリーニングペーパーで拭いてください。光ファイバのクリーニングの しかたは、メンテナンス編第1章「3. レーザ発振部のメンテナンス」P.157 を参照して ください。

- ⇒ 汚れのチェックにはオプションの端面チェッカーを使用してください。
- ⇒ エアブローは右のようなカメラ用のものを使用してください。ゴムが劣化していると中にほこりが入りますので、きれいなものを使用してください。

作業中のご注意

→ 作業中に光ファイバにショックを与えたり、最小曲げ半径(下表)以下に曲げたり しないよう注意してください。

光ファイバ最小曲げ半径

コア径	最小曲げ半径
φ 0.2、0.3、0.4mm	100mm
φ 0.6mm	150mm
φ 0.8mm	200mm
φ 1.0mm	250mm

⇒ 光ファイバプラグのリングを強く締めすぎないでください。レーザ光の入射位置が ずれることがあります。リングは工具を使わずに手で締めてください。

光ファイバの最大入射レーザエネルギーおよびパワーの目安

下表は、光ファイバに入射できる最大レーザエネルギーおよびパワーの目安です。この 数値を超過しないように使用してください。

単一分岐または時間分岐の場合

同時2分岐では2分の1、同時3分岐では3分の1の数値となります。

ーローフア径 型式	ML-2050A	ML-2051A	ML-2150A
SI ø 0.2mm	_		
SI ø 0.3mm	151 1534	7J、7W	_
SI φ 0.4、0.6、0.8、1.0mm	- 15J, 15W		25J、25W

⇒ 光ファイバは SI 型をご使用ください。GI 型は使用できません。

準備するもの

+ドライバ/エアブロー

🖕 入射ユニットへの接続

(1) 上面カバーを取り外します。

(2) キャップを付けたまま、光ファイバの先端を光ファイバ取入口から中に入れます。 光ファイバ取入口は、本体上面にあります。

(3) 中に入れた光ファイバの先端からキャップを外し、エアブローでほこりを除去します。

(4) 光ファイバのプラグに付いているツメを、入射ユニット側の溝に合わせて差し 込みます。

(2) 光ファイバのプラグに付いているツメを、出射ユニット側の溝に合わせて差し込みます。

- (3) プラグ外側のリングを矢印の方向へ回して固定します。
- ⇒ リングは工具を使わずに手で締めてください。
- ⇒ コネクタ部分は曲がりません。無理な力をかけないように注意してください。

4. レーザコントローラ(オプション)の接続

レーザコントローラを使用すると、本体から離れた場所で操作することができます。

準備するもの

レーザコントローラ/回線ケーブル

作業手順

- (1) 前扉を開けて短絡ケーブルを外します。
- (2) 本体とレーザコントローラを回線ケーブルで接続します。
- ⇒ レーザコントローラと回線ケーブルはオプションです。回線ケーブルには、3mと 15mの2種類があります。
- ⇒ レーザコントローラを接続すると、操作パネルからの操作はできなくなります。ただし、EMERGENCY STOP ボタンと CONTROL キースイッチは有効です。

5. 外部通信用変換アダプタ(オプション)の接続

パソコンなど RS-232C を搭載している制御機器による外部通信制御 (RS-485 CONTROL)でレーザ溶接を行う場合は、オプションの外部通信用変換アダプタ「RS-232C/ RS-485 変換アダプタ」が必要です。

➡ RS-485 が搭載されている PLC などと接続する場合は、外部通信用変換アダプタは 必要ありません。

準備するもの

RS-232C/RS-485 変換アダプタ/ RS-485 ケーブル/ RS-232C ケーブル

作業手順

(1)本体の RS-485(1) または RS-485(2) コネクタに RS-485 ケーブルを接続します。

(2)「RS-232C/RS-485 変換アダプタ」を経由して、パソコンなどの RS-232C コネクタに RS-232C ケーブルを接続します。

操作編 第1章 ●制御方法・起動と終了

1. 制御方法

装置の制御方法について説明します。

制御方法には、操作パネルまたはレーザコントローラ(オプション)から制御する方法 (PANEL CONTROL)、PLC*などを装置に接続して外部入出力信号によって制御する方法 (EXTERNAL CONTROL)、パソコンなどからコマンドを送信して制御する方法(RS-485 CONTROL)の3種類があります。

これらの3種類の制御方法から溶接作業に合わせた方法を選択します。選択されている 制御方法は STATUS 画面に表示されます。

* PLC: Programmable Logic Controller あらかじめプログラムした制御内容を逐次実行することに よりシーケンス制御を行う装置。シーケンサ(三菱電機の商品名)の名称で呼ばれることが多い。

制御方法の切り替え

操作パネルによる制御(PANEL CONTROL)

装置を単体で使用する場合や、装置に接続された PLC やパソコンなどの電源が OFF になっているときは、操作パネルによる制御の状態になります。

- → 外部入出力信号による制御から操作パネルによる制御に切り替えるときは、EXT.I/ O(1) コネクタの 23 番ピン(制御切替)を OFF にします。
- ➡ 外部通信制御による制御から操作パネルによる制御に切り替えるときは、パソコン などから制御方法を設定するコマンドを送信します。
- ➡ 他の制御方法で使用していても、本体の CONTROL キースイッチをいったん OFF に すると、操作パネルによる制御に戻ります。再度 CONTROL キースイッチを ON に すると、外部通信制御だった場合は操作パネルによる制御の状態、外部入出力信号 による制御だった場合は、EXT.I/O(1) コネクタの 23 番ピン(制御切替)が ON(閉 路)になっていれば外部入出力信号による制御の状態になります。

外部入出力信号による制御(EXTERNAL CONTROL)

PLC などを本体に接続して、EXT.I/O(1) コネクタの 23 番ピン(制御切替)を ON(閉路) にすると、外部入出力信号による制御(EXTERNAL CONTROL)に切り替わります。

⇒ 操作パネルやパソコンなどの操作で、この制御方法に切り替えることはできません。

外部通信制御による制御(RS-485 CONTROL)

本体に接続したパソコンなどから制御方法を設定するコマンドを送信すると、外部通信 制御による制御に切り替わります。

→ 操作パネルや外部入出力信号の操作で、この制御方法に切り替えることはできません。

2. 起動と終了

装置の起動と終了方法について説明します。

起動のしかた

• 操作手順

- (1) MAIN POWER スイッチを ON にします。
- (2) CONTROL キースイッチを ON にします。
- (3) 必要に応じて制御方法を選択して、レーザ溶接を行います。
- ⇒ 操作パネルからの制御の場合は、液晶ディスプレイの画面表示を見ながら、ボタン 操作で出力条件や分岐方法などを設定し、LASER START/STOP ボタンを押してレー ザ光を出力します。
- → 外部入出力信号による制御の場合は、PLC などでプログラムを実行することにより、 制御切替、出力条件の選択、分岐方法の設定、レーザスタート/ストップなどを行い、 レーザ光を出力します。
- ⇒ 外部通信制御による制御の場合は、プログラムを実行することにより、制御切替、 出力条件の設定、分岐方法の設定、レーザスタート/ストップなどを行い、レーザ 光を出力します。

終了のしかた

操作手順

- (1) 高電圧を OFF にします。
- (2) CONTROL キースイッチを OFF にして、キーを抜きます。
- (3) MAIN POWER スイッチを OFF にします。
- ⇒ CONTROL キースイッチのキーは、レーザ安全管理者が保管します。

1. 溶接条件の設定

操作パネルを使ってレーザ溶接の諸条件を設定する方法を説明します。設定した条件は、 変更できないように保護することができます。

溶接条件の設定画面について

溶接条件を設定する SCHEDULE、STATUS、POWER MONITOR、INITIAL 画面の見方を説 明します。

操作パネルに表示される設定画面には、以下の4種類の画面があります。これらの画面 を見ながら、操作パネルのキー操作で各種の設定を行います。

MENU キーを押すと、操作パネルの画面が SCHEDULE 画面、STATUS 画面、POWER MONITOR 画面の順に切り替わります。レーザ光を出力すると、自動的に POWER MONITOR 画面が表示され、出力エネルギーを確認することができます。

パソコンなどによる外部通信機能を設定したり、各種の機能の切り替えなどを行う場合は、INITIAL 画面を表示します。

SCHEDULE 画面

SCHEDULE 画面では、レーザ光の出力条件と SCHEDULE 番号を設定しておきます。設定 してある SCHEDULE 番号を入力して、出力条件を呼び出すことができます。

定型波形(FIX)と任意波形(FLEX)では、レーザ出力時間とレーザ出力値の設定項目 が異なります。

定型波形(FIX)画面

任意波形(FLEX)画面

-SCH.#00 [FORM:FLEX] ≃	0.0J WATER 28°C
<u> </u>	REPEAT= 00pps
▲Point1 00.0ms 000.0%	SHOT =9999
Point2 00.0ms 000.0%	
Point3 00.0ms 000.0%	
Point4 00.0ms 000.0%	
▼Point5 00.0ms 000.0%	
HV:OFF POSI.BLINK:OF	F POSITION:OFF

表示項目の見方

-SCH.#	レーザ光の SCHEDULE 番号を設定しま 条件を設定することができます。	 ます。#00 ~ #31 まで 32 種類の番号と出力
FORM	波形の作成方法を、「FIX」(定型波形)または「FLEX」(任意波形)に切り替えます FORMの設定を切り替えると波形の設定値は0にリセットされます。	
₩	✓ レーザ出力値のグラフ表示を ON/OFF で設定します。ON を設定すると 設定したレーザ出力値が波形で表示されます。	
	定型波形(FIX)のグラフ表示	任意波形(FLEX)のグラフ表示
	[FORM:FIX] ≈ 0.0J WATER 28°C PEAK=04.00kW 100% 00.5ms 01.5ms 100% 01.5ms 025.0% 03.0ms 050.0% 01.0ms 10ms POSI.BLINK:OFF POSITION:OF	[FORM:FLEX] ≈ 12.5J WATER 28°C PEAK=04.00kW 100% 01.0ms 090.0% 01.0ms 070.0% 01.0ms 088.0% 01.0ms 065.0% 5 01.0ms 000.0% F POSI.BLINK:OFF POSITION:OFF
	グラフ表示された波形と同じ波形のレーがらレーザ出力値を設定することがで がらレーザ出力値を設定することがで グラフ表示を ON にすると下の項目が 設定するときは、↓ を OFF にしてかり	ーザ光が出力されますので、波形を確認しな きます。 「見えなくなります。「REPEAT」、「SHOT」を ら設定してください。

	C4.
E	10
Ξ	15
幺	
	/iii

		します。実際のレーザ出力値(「FLASH1」~「FLASH3」)は、ここで設定したピー ク値を基準値(100%)として、ピーク値に対する割合(%)を設定します。 < <u>注意</u> > 設定できるレーザ出力ピーク値の最大値は、機種によって異なります。 ML-2050A:4.0kW / ML-2051A:2.5kW / ML-2150A:6.0kW
	⊅SLOPE	「FLASH1」にアップスロープする(レーザ出力が徐々に強まる)時間を設定します。 「FLASH1」を設定してから、↗SLOPE ≦ FLASH1 の範囲で設定してください。
定型波	FLASH1 FLASH2 FLASH3	定型波形「FIX」を設定する場合は、「FLASH1」(第 1 レーザ)~「FLASH3」(第 3 レーザ)のレーザ出力時間(ms)とレーザ出力値(%)を、以下の範囲で設定します。 レーザ出力時間(ms):0.0 ~ 10.0ms レーザ出力値(%) :0 ~ 200%
秋 (F->	SLOPE	最終 FLASH にダウンスロープする (レーザ出力が徐々に弱まる) 時間を設定します。 ↘SLOPE ≦ FLASH1、FLASH2、FLASH3 の範囲で設定してください。 〈注意〉
X		 ・レーザ出力値(%)の設定範囲は0~200%ですが、「PEAK」の最大値×100% を超える設定はできません。100%を設定すると「PEAK」で設定した値になります。 ML-2050A: PEAKの最大値が4.0kWのとき、レーザ出力値は0~100% ML-2051A: PEAKの最大値が2.5kWのとき、レーザ出力値は0~100% ML-2150A: PEAKの最大値が6.0kWのとき、レーザ出力値は0~100% ・レーザ出力時間は、0.20ms ≦ FLASH1 + FLASH2 + FLASH3 ≦ 10.0ms となる ように設定してください。
任 意 波 形 (F L E ×	Point1 • • Point20	任意波形「FLEX」を設定する場合は、「Point1」~「Point20」で各ポイントのレー ザ出力時間(ms)とレーザ出力値(%)を、以下の範囲で設定します。 レーザ出力時間(ms):0.2~10.0ms レーザ出力値(%):0~200% <注意> レーザ出力時間は、0.2ms ≦全 Point 値の合計≦10.0ms となるように設定してく
REF	'EAT	ださい。 レーザ光の1秒間の出力回数を、00~30pps (pulse per second)の範囲で設定し ます。 0を設定すると単発出力になります。
SHOT		レーザ光の出力回数を、0000 ~ 9999の範囲で設定します。 設定した回数に達するとレーザ出力は停止します。 1を設定すると単発出力になります。 「REPEAT」が0以外の設定で「SHOT」が0の場合は、レーザストップ信号が入力 されるまで、レーザ光は出力し続けます。
~		設定したレーザ出力条件によるレーザ出力エネルギー(J)の予測値が表示されます。 < <u>〈注意〉</u> 本装置は、レーザパワーフィードバック制御によりレーザ光の出力エネルギーを算 出していますが、光学的・電気的な特性により、レーザ出力エネルギーの予測値と 測定値(実測値)は若干異なります。レーザ出力エネルギーの予測値は、あくまで も目安としてご使用ください。
HV		高電圧(HIGH VOLTAGE)の ON/OFF を設定します。 ON にすると高電圧が入り、HIGH VOLTAGE ランプが点灯します。 OFF にすると高電圧が供給されず、レーザ光は出力しません。

レーザ出力ピーク値(「FLASH1」~「FLASH3」を 100% にしたときの値)を設定

PEAK

POSI.BLINK	ガイド光の点滅(POSITION BLINK)または連続点灯を ON/OFF で設定します。 「POSITION」でガイド光の出力を ON にした状態で、ON にするとガイド光は点滅し、 OFF にすると連続点灯します。
POSITION	ガイド光の出力を ON/OFF で設定します。 ON にするとガイド光が出力し、OFF にすると出力しません。 INITIAL 画面の「POSITION AUTO OFF」で、ガイド光が自動消灯するまでの時間を 設定することができます。
WATER	冷却水の温度が表示されます。SELF CHECK が終了すると測定されます。

STATUS 画面

STATUS 画面では、装置の制御方法を確認し、レーザ光を出力する分岐シャッタを開く 設定をします。また、レーザ光の総出力回数や適正出力回数などを設定します。

-STATUS [PANEL CONTROL] WATER 28°C BEAM-1:OFF RESET SELECT PRESET BEAM-2:OFF →SHOT 123456789 123456789 BEAM-3:OFF →GOOD 123456789 123456789 FIBER:[SI] Ø1.0mm HV:OFF POSI.BLINK:OFF POSITION:OFF

表示項目の見方

-STATUS	使用されている装置の制御方法が表示されます。 EXTERNAL CONTROL(外部制御): EXT.I/O コネクタに接続した PLC などで制 御します。 PANEL CONTROL(内部制御) : 操作パネルで制御します。 RS-485 CONTROL(外部通信制御): RS-485(1)、RS-485(2) コネクタに接続した パソコンなどで制御します。
BEAM-1 BEAM-2 BEAM-3	分岐シャッタ1~3の開閉を ON/OFF で設定します。 ON にすると分岐シャッタが開き、OFF にすると分岐シャッタが閉じます。
RESET SELECT →SHOT →GOOD	表示されたレーザ光の総出力回数(SHOT COUNT)の値をリセットします。 表示されたレーザ光の適正出力回数(GOOD COUNT)の値をリセットします。
PRESET →SHOT →GOOD	カウント通知機能を設定します。 レーザ光の総出力回数(SHOT COUNT)およびレーザ光の適正出力回数(GOOD COUNT)が、ここで設定した回数に達すると、メッセージが表示されます。
FIBER SI Ø	使用する光ファイバの型式を SI (Step Index) / GI (Graded Index) で選択します。 通常は SI で使用します。 光ファイバへの過大入射から光ファイバを保護するために φ 0.2 ~ 1.0mm の範囲 で、使用する光ファイバのコア径を設定します。設定したコア径によって光ファ イバへの入射可能最大値が算出され。ランプ投入電力が制限されます

HV	高電圧(HIGH VOLTAGE)の ON/OFF を設定します。 ON にすると高電圧が入り、HIGH VOLTAGE ランプが点灯します。 OFF にすると高電圧が供給されず、レーザ光は出力しません。
POSI.BLINK	ガイド光の点滅(POSITION BLINK)または連続点灯を ON/OFF で設定します。 「POSITION」でガイド光の出力に ON を指定した状態で、ON にするとガイド光は 点滅し、OFF にすると連続点灯します。
POSITION	ガイド光の出力を ON/OFF で設定します。 ON にするとガイド光が出力し、OFF にすると出力しません。
WATER	冷却水の温度を表示します。SELF CHECK が終了すると測定されます。

POWER MONITOR 画面

POWER MONITOR 画面では、モニタされたレーザ光の測定値を確認したり、モニタ値の 範囲や、フラッシュランプ投入電力の上限値などを設定します。

-POWER MONITOR SCH.#00 ⊬:OFF WATER28°C			
ENERGY	12.5J	HIGH 045.0J	
AVERAGE	12 5W	LOW 000.05	
	12:30	LAMP INPUT PWR 000%	
SHOT COUN	ит 123456789	REFERENCE SET 000%	
GOOD COUNT 123456789			
HV:OFF	POSI.BLINK	OFF POSITION:OFF	

表示項目の見方

SCH.#	現在動作しているレーザ出力設定条件の SCHEDULE 番号が表示されます。 別の SCHEDULE 番号を入力すると、該当する SCHEDULE で最後に出力した レーザ光のエネルギー測定値だけが表示されます。 本装置は、設定した 32 種類の SCHEDULE について、出力したレーザ光の 最終エネルギー値を記憶しています。
K	レーザ出力値のグラフ表示を ON/OFF で設定します。ON を設定すると画面 右側に出力されたレーザ光が波形で表示されます。 グラフ表示を ON にすると下の項目が見えなくなります。表示するときは、 OFF にしてください。
ENERGY	レーザエネルギーの測定値(J)が表示されます。レーザ光が出力されるた びに測定、表示されますが、高速繰り返し出力の場合は表示が間に合わない ため、一定間隔ごとのエネルギーが表示されます。
HIGH LOW	モニタするレーザエネルギーの上限値「HIGH」と下限値「LOW」を設定し ます。レーザエネルギーが設定値の範囲から外れたときはモニタ異常が出力 されます。TROUBLE RESET キーを押すと解除されます。
AVERAGE	出力されたレーザ光の、1 秒ごとの平均パワー(W)が表示されます。モニ タ表示のみで、上下限判定は行いません。
SHOT COUNT	レーザ光の総出力回数が表示されます。 フラッシュランプを交換する目安にしてください。 表示を 0 に戻すときは、STATUS 画面でリセットの操作をします。

GOOD COUNT	レーザ光の適正出力回数が表示されます。適正出力とは、「HIGH」「LOW」 で設定した許容エネルギー範囲のレーザ光出力を意味します。 表示を 0 に戻すときは、STATUS 画面でリセットの操作をします。	
LAMP INPUT PWR	フラッシュランプの電力が表示されます。ランプに投入されている電力を、 ランプ固有の最大投入可能値に対する割合(%)で表示します。 < <u> 〈注意〉</u> 80% 以上が表示された状態で使用すると、フラッシュランプの交換サイク ルが短くなることがあります。	
REFERENCE SET	ランプ投入電力の上限とする値を0~100%の範囲で設定します。通常は 100%に設定します。設定した値はフラッシュランプの劣化通知の基準値と なり、ここで設定した値を超えると、フラッシュランプの交換時期が近づい たことを知らせる画面が表示されます。	
HV	高電圧(HIGH VOLTAGE)の ON/OFF を設定します。 ON にすると高電圧が入り、HIGH VOLTAGE ランプが点灯します。 OFF にすると高電圧が供給されず、レーザ光は出力しません。	
POSI.BLINK	ガイド光の点滅または連続点灯を ON/OFF で設定します。 「POSITION」でガイド光の出力を ON にした状態のとき、ON にするとガイ ド光は点滅し、OFF にすると連続点灯します。	
POSITION	ガイド光の出力を ON/OFF で設定します。 ON にするとガイド光が出力し、OFF にすると出力しません。 INITIAL 画面の「POSITION AUTO OFF」で、ガイド光が自動消灯するまで の時間を設定することができます。	
WATER	冷却水の温度が表示されます。SELF CHECK が終了すると測定されます。	

INITIAL 画面

INITIAL 画面では、外部通信機能を使う場合に装置 No. や通信条件を設定します。また、 特定の機能の切り替えをしたり、冷却水温度のアラーム範囲などを設定します。

INITIALIZE:0	FF	WATER 28°C
TEMP CONT 30	C ALARM	L20°C H40°C
SW1-12345678	SW2-12345678	SW3-12345678
OFF	OFF	OFF

表示項目の見方

INITIALIZE	設定値を初期化します。リチウム電池の交換、プログラムの書き換え、CPU 基板の
	交換などの後は設定値が変わったり消えたりする場合がありますので、初期化を行
	い、再設定してください。
	ON に設定して ENTER キーを押すと、初期化が完了するまで約 15 秒かかります。
	その間、POWER ランプが点滅します。点滅が完了してから電源を切ってください。
	初期化中(点滅中)に電源を切ると、次回電源投入時にエラー No.52/MEMORY
	TROUBLE (メモリ異常) が表示されます。その場合は再度 ON に設定してください。

秵
₩
罢
ía.
新品

NETWORK#	外部通信機能でパソコンなどから遠隔操作をするとき、装置 No. を #00 ~ #15 の 範囲で設定します。
TEMP CONT Alarm L	 冷却水の制御温度を設定します。 アラーム温度の範囲を、下限値「L」(LOW)と上限値「H」(HIGH)で設定します。 通常、設定値を変える必要はありません。やむを得ず変更する場合は、当社までお問い合わせください。 〈注意〉 冷却水温度が5℃未満の場合、エラー No.11/LOW TEMPERATURE OF COOLANT(冷却水温度過小)が発生します。「5℃以上、Lの設定値未満」かつ「温度上昇が0.3℃以下/分」であれば使用できます。電源を入れてから30分たっても使用可能にな
	らない場合は、エラー No.11 の異常になります。「H」の設定値を超えると、エラー No.10/HIGH TEMPERATURE OF COOLANT(冷却水温度過大)になります。
POSITION AUTO OFF	ガイド光が自動消灯するまでの時間を、01 ~ 98min (minute)の範囲で設定します。 1 分単位で設定できます。 00 を設定するとガイド光は出力されません。 99 を設定するとガイド光は自動消灯しません。
SW1	「SW(SWITCH)1」の1~8に割り当てられた機能を、ON/OFF で切り替えます。
SW1-1	1:高電圧のON/OFFを切り替えます。ONにするとAUTO STARTで高電圧が入らず、 HV:OFFの状態で画面が表示されます。
SW1-2	2: EXT.I/O コネクタによるレーザスタート/ストップ制御を切り替えます。ON に すると、PANEL CONTROL(内部制御)時でも、EXT.I/O コネクタに接続した PLC などから、レーザスタート/ストップを行うことができます。
SW1-3	3: ON にすると、EXT.I/O(1) コネクタの7番ピンからレーザ出力中信号が出力さ れます。繰り返し出力の最初のショットの立ち上がりで ON になり、最後の ショットの打ち終わりで OFF になります。
SW1-4 • 5	4・5:使用しません。
SW1-6	6:レーザエネルギーの測定値(J)の測定精度を切り替えます。
	OFF · × 1 (000.0J) / ON · × 10 (00.00J) <注意> ON にすると、SCHEDULE 画面のレーザ出力ピーク値「PEAK」の最大値は、 機種に関わらず、1.0kW になります。
SW1-7	 7:パルス幅(レーザ出力時間 ms)の設定範囲を切り替えます。 OFF:00.0ms / ON:0.00ms
SW1-8	8:SW1の6、7番の設定を変更するには、SW1の8番をONにしておく必要があ ります。
	SW1 の 6、7 番の設定を変更すると、SCHEDULE の設定値が初期化されます。誤 操作を防ぐために、SW1 の 8 番を ON にしておかないと設定を変更できないよう にしてあります。SW1 の 6、7 番を変更して ENTER キーを押すと、SW1 の 8 番は OFF に戻ります。初期化が完了するまで約 15 秒かかります。その間、POWER ラ ンプが点滅します。点滅が完了してから電源を切ってください。

SW2	「SW (SWITCH) 2」の1~8に割り当てられた外部通信のデータ形式と転送速度を、			
SW2-1 SW2-2 SW2-3 SW2-4 SW2-5 • 6	ON/OFF で切り皆え 1:データビットの 2:パリティの有無 3:パリティのモー 4:ストップビット 5・6:通信速度を調 ON/OFF の組み 5 OFF OFF ON	- よ g 。 長さを切り替え を設定します。 ドを設定します の設定をします の設定をします の設定もす。 分合わせにより」 6 OFF ON OFF	ます。 OFF:8 OFF:ま のFF:4 のFF:2 以下の速度が設定 りps 9600 19200 38400	bit / ON: 7bit らり/ ON:なし 3数/ ON:奇数 / ON:1 できます。 -
	ON	ON	(9600)	_
SW2-7 SW2-8	7:ON にすると、5 になります。 8:使用しません。	朴部通信のレー	ザパワーモニタ値	iの自動送信がデフォルトで ON
SW3 SW3-1 ~ 4 SW3-5 SW3-6 ~ 8	 3 3-1~4 5: ON にすると、EXT.I/O(1) コネクタの4番ピン(終了出力)が設定ショット完 了後に1回だけ閉路します。レーザ出力中に異常発生やレーザストップ信号入 力があったときも終了信号を出力します。 3-6~8 6・7・8:使用しません。 			
W/ATER	冷却水の温度が表示	Ethtt SFI	F CHECK が終了。	オスレ測完されます
⇒ SW1~	SW3 スイッチの記	定を変更した	生場合は、設定を	と有効にするため、必ずいっ
たん電流	原を切ってから使用]してください	0	

設置・準備編

操作鈩

섥

第 2 章

各種の設定

レーザ光の出力条件を設定する(SCHEDULE 画面)

SCHEDULE 画面の設定方法を説明します。この画面ではレーザ光のピーク値や出力時間、 出力値などの出力条件と SCHEDULE 番号を設定しておきます。

- ⇒ 32 種類の出力条件を設定し、#00 ~ #31 の SCHEDULE 番号で管理することができ ます。レーザ溶接を行うときは、登録した SCHEDULE 番号を入力し、設定しておい た出力条件でレーザ溶接を行うことができます。
- → 付録の「出力条件データ記入表」に、設定した出力条件を記入しておくと便利です。
- → 設定項目について詳細は、「溶接条件の設定画面について」P.54 を参照してください。

● 定型波形(FIX)で出力条件を設定する

「FIX」では、「FLASH1」(第1レーザ)~「FLASH3」(第3レーザ)でレーザ光の出力 時間と出力値を設定し、最大3分割で定型の波形となるレーザ光を設定します。

ここでは、SCHEDULE番号:#00、ピーク値:4.0kW、FLASH1:1.5ms/100%、 FLASH2:1.5ms/25%、FLASH3:3.0ms/50%、アップスロープ0.5ms、ダウンスロープ 1.0msの出力条件を設定します。

(1) MENU キーを押して SCHEDULE 画面を表示します。

```
-SCH.#00 [FORM:FIX ] \simeq 0.0J WATER 28°C

\downarrow \simeq:OFF PEAK=00.00kW REPEAT= 00pps

^{3}SLOPE 00.0ms SHOT =0000

FLASH1 00.0ms 000.0%

FLASH2 00.0ms 000.0%

^{3}SLOPE 00.0ms

HV:OFF POSI.BLINK:OFF POSITION:OFF
```

(2)「-SCH.#」にカーソルを移動し、ON または OFF キーを押して SCHEDULE 番号を 設定します。

(3)「FORM」にカーソルを移動し、ON または OFF キーを押して「FIX」を設定します。

(4)「PEAK」にカーソルを移動し、ON または OFF キーを押してレーザ出力ピーク 値を設定します。

〈注意〉

設定できるレーザ出力ピーク値の最大値は、機種によって異なります。

ML-2050A:4.0kW / ML-2051A:2.5kW / ML-2150A:6.0kW

(5)「FLASH1」~「FLASH3」にカーソルを移動し、ON または OFF キーを押してレー ザ出力時間(ms)とレーザ出力値(%)を設定します。

⇒ レーザ出力時間は 0.0 ~ 10.0ms の範囲で設定し、レーザ出力値は、設定したレー ザ出力ピーク値を 100% とした時の割合(%)を設定します。 〈注意〉

レーザ出力時間は、次の値になるように設定してください。

 $0.20ms \leq \lceil FLASH1 \rfloor + \lceil FLASH2 \rfloor + \lceil FLASH3 \rfloor \leq 10.0ms$

(6)「↗SLOPE」にカーソルを移動し、ON または OFF キーを押してレーザ光が
 FLASH1 にアップスロープする(徐々に強くなっていく)時間を設定します。
 <注意>

「<code><code><code>^SLOPE</code>」は、次の値になるように設定してください。</code></code>

↗SLOPE ≤ FLASH1

(7)「>SLOPE」にカーソルを移動し、ON または OFF キーを押してレーザ光が最終
 FLASH にダウンスロープする(徐々に弱くなっていく)時間を設定します。
 <注意>

「
SLOPE」は、次の値となるように設定してください。

 \searrow SLOPE \leq FLASH1, FLASH2, FLASH3

(8) 1 秒間に複数回出力するときは「REPEAT」にカーソルを移動し、レーザ光の1
 秒間の出力回数を、00 ~ 30pps (pulse per second)の範囲で設定します。
 → 0 を設定すると単発出力となります。

(9)繰り返し出力するときは「SHOT」にカーソルを移動し、レーザ光の出力回数を、 0000~9999の範囲で設定します。

➡ 「REPEAT」が0以外の設定で、「SHOT」が0の場合は、レーザストップ信号が入力 されるまで、レーザ光は出力し続けます。

● 出力条件を確認する

(1) 「└┘」にカーソルを移動し、ON キーを押します。

設定したレーザ出力時間とレーザ出力値がグラフ表示され、出力されるレーザ光を波形 で確認することができます。

⇒ 波形の立ち上がりに、オーバーシュート(設定値より高い形)が発生することがあります。その場合は「∧SLOPE」を 0.1 ~ 1.0ms ほど長くしてください。

- (2)「~」に表示された出力エネルギーを確認します。
- ⇒「≃」には、設定した出力条件によるレーザ出力エネルギーの予測値が表示されます。 レーザ溶接時の実測値(POWER MONITOR 画面に表示される測定値)とは若干異なりますが、目安として参考にしてください。

● 任意波形(FLEX)で出力条件を設定する

「FLEX」では、「Point1」~「Point20」の範囲で各 Point の出力時間と出力値を設定し、 任意の波形となるレーザ光の出力を設定します。

ここでは、SCHEDULE 番号:#01、ピーク値:4.0kW、Point1:1.0ms/90%、Point2: 1.0ms/70%、Point3:1.0ms/88%、Point4:1.0ms/65%、Point5:1.0ms/0%の出力条 件を設定します。

(1) MENU キーを押して SCHEDULE 画面を表示します。

(2)「-SCH.#」にカーソルを移動し、ON または OFF キーを押して SCHEDULE 番号を 設定します。

(3)「FORM」にカーソルを移動し、ON または OFF キーを押して「FLEX」を設定します。

(4)「PEAK」にカーソルを移動し、ON または OFF キーを押してレーザ出力ピーク 値を設定します。

〈注意〉

設定できるレーザ出力ピーク値の最大値は、機種によって異なります。

ML-2050A: 4.0kW / ML-2051A: 2.5kW / ML-2150A: 6.0kW

(5)「Point」にカーソルを移動し、各ポイントのレーザ出力時間(ms)とレーザ出 力値(%)を設定します。

「Point」の「▲」「▼」にカーソルを合わせて CURSOR キー(△または▽)を押すと上下 にスクロールし、未表示の Point を表示することができます。

⇒ ポイントは「Point1」~「Point20」、レーザ出力時間は 0.20~ 10.0ms の範囲で設定し、レーザ出力値は、設定したレーザ出力ピーク値を 100% としたときの割合(%)を設定します。

付

設置・準備編

操作纪

⁻SCH.#00 [FORM:FLEX] ≈ 0.0J WATER 28°C ↓ : OFF PEAK=00.00kW REPEAT= 00pps APoint1 00.0ms 000.0% SHOT =0000 Point2 00.0ms 000.0% Point3 00.0ms 000.0% Point4 00.0ms 000.0% VPoint5 00.0ms 000.0% HV:OFF POSI.BLINK:OFF POSITION:OFF

〈注意〉

レーザ出力時間の設定は、1 つ前の Point からの時間を入力します。 レーザ出力時間は、次の値になるように設定してください。

0.20ms ≦全 Point 値の合計≦ 10.0ms

(6) 1 秒間に複数回出力するときは「REPEAT」にカーソルを移動し、レーザ光の1
 秒間の出力回数を、00 ~ 30pps (pulse per second)の範囲で設定します。
 → 0 を設定すると単発出力となります。

(7)繰り返し出力するときは「SHOT」にカーソルを移動し、レーザ光の出力回数を、 0000 ~ 9999 の範囲で設定します。

➡ 「REPEAT」が0以外の設定で、「SHOT」が0の場合は、レーザストップ信号が入力 されるまで、レーザ光は出力し続けます。

⇒ 波形の立ち上がりに、オーバーシュート(設定値より高い形)が発生することがあります。その場合は「Point1」を 0.1 ~ 1.0ms ほど長くしてください。

(2) 「~」に表示された出力エネルギーを確認します。

⇒「≃」には、設定した出力条件によるレーザ出力エネルギーの予測値が表示されます。 レーザ溶接時の実測値(POWER MONITOR 画面に表示される測定値)とは若干異なりますが、目安として参考にしてください。

出力状態を設定する(STATUS 画面)

STATUS 画面の設定方法を説明します。この画面では、表示されている制御方法を確認し、 出力先の分岐シャッタを開く設定をします。また、レーザ光の出力回数の設定やリセッ トなどを行います。

⇒ 設定項目について詳細は、「溶接条件の設定画面について」P.56 を参照してください。

制御方法を確認する

(1) MENU キーを押して STATUS 画面を表示します。

操作パネルによる制御(PANEL CONTROL)

装置を単体で使用する場合や、装置に接続された PLC やパソコンなどの電源が OFF になっているときは、操作パネルによる制御の状態になり「-STATUS」に「PANEL CONTROL」と表示されます。

外部入力信号による制御(EXTERNAL CONTROL)

PLC などを本体に接続して、EXT.I/O(1) コネクタの 23 番ピン(制御切替)を ON にする と、外部入出力信号による制御(EXTERNAL CONTROL)に切り替わり、「-STATUS」に 「EXTERNAL CONTROL」と表示されます。

-STATUS [EXTERNAL CONTROL] WATER 28°C
BEAM-1:OFF RESET SELECT PRESET
BEAM-2:OFF →SHOT 123456789 123456789
BEAM-3:OFF →GOOD 123456789 123456789
FIBER:[SI] ø1.0mm
HV:OFF POSI.BLINK:OFF POSITION:OFF

外部通信制御による制御(RS-485 CONTROL)

本体に接続したパソコンなどから制御方法を設定するコマンドを送信すると、外部通信 制御に切り替わり、STATUS 画面の「-STATUS」に「RS-485 CONTROL」と表示されます。

-STATUS [R	S-485 CONTROL	L] WATER 28°C
BEAM-1:OFF	RESET SELEC	CT PRESET
BEAM-2:OFF	→SHOT 12345	56789 123456789
BEAM-3:OFF	→GOOD 12345	56789 123456789
	FIB	ER:[SI] ø1.0mm
HV:OFF F	OSI.BLINK:OFF	POSITION:OFF

分岐シャッタの開閉を設定する

操作パネルから制御するときは、STATUS 画面で分岐シャッタの開閉を設定します。 「BEAM-1」~「BEAM-3」が分岐シャッタ1~3に対応し、ONを設定すると対応する分 岐シャッタが開いてレーザ光を出力します。

(1)「BEAM-1」~「BEAM-3」にカーソルを移動し、ON または OFF キーを押して分 岐シャッタの開閉を設定します。

-STATUS [P	ANEL CONTROL] WATER 28°C
BEAM-1:ON	RESET SELECT PRESET
BEAM-2:ON	→SHOT 123456789 123456789
BEAM-3:ON	→GOOD 123456789 123456789
	FIBER:[SI] Ø1.0mm
HV:OFF F	POSI.BLINK:OFF POSITION:OFF

(2) ENTER キーを押します。

レーザ光の出力回数をリセットする

POWER MONITOR 画面に表示される「SHOT COUNT」(レーザ光の総出力回数)と「GOOD COUNT」(レーザ光の適正出力回数)の数値をリセットします。

RESET SELECT の「→SHOT」または「→GOOD」の「→」にカーソルを移動し、
 ENTER キーを押します。

数値がリセットされ「00000000」と表示されます。

```
-STATUS [RS-485 CONTROL] WATER 28°C
BEAM-1:OFF RESET SELECT PRESET
BEAM-2:OFF →SHOT 000000000 123456789
→GOOD 000000000 123456789
→GOOD 000000000 123456789
FIBER:[SI] Ø1.0mm
HV:OFF POSI.BLINK:OFF POSITION:OFF
```

カウント通知機能を設定する

POWER MONITOR 画面に表示される「SHOT COUNT」(レーザ光の総出力回数)と「GOOD COUNT」(レーザ光の適正出力回数)がここで設定した回数に達すると、メッセージが表示されます。保守管理や生産管理に役立てることができます。

(1) PRESET の「→SHOT」または「→GOOD」の数値にカーソルを移動し、ON また は OFF キーを押して任意の回数を設定します。

(2) ENTER キーを押して、設定した出力回数を確定します。 設定した回数が登録されます。

「SHOT COUNT」が「→SHOT」に設定した総出力回数に達すると、フラッシュランプの 点検を促す画面が表示されます。

!!! COUNT	r up !!!	WATER 28°C
СНЕСК ТН	E LAMPS !!	SHOT 123456789
HV:ON	POSI.BLINK:OF	F POSITION:OFF

「GOOD COUNT」が「→GOOD」に設定した適正出力回数に達すると、良品生産数を知ら せる画面が表示されます。

!!! COUN	T UP !!!	WATER 28°C
GOOD COU	JNT UP !! G	OOD 123456789
HV:ON	POSI.BLINK:OFF	POSITION:OFF

TROUBLE RESET キーを押すと元の画面に戻ります。

光ファイバの保護設定をする

光ファイバへの過大入射から、光ファイバを保護します。使用するコア径を設定すると、 光ファイバへの入射可能最大値が算出され、ランプ投入電力が制限されます。 (1)「φ」にカーソルを移動し、ON または OFF キーを押してコア径を選択します。 工場出荷時の設定値は SI:φ 1.0mm、設定できる範囲は、φ 0.2 ~ 1.0mm です。

-STATUS	[RS-485 CONTROL]	WATER 28°C
BEAM-1:O	FF RESET SELECT	PRESET
BEAM-2:O	FF →SHOT 123456789	123456789
BEAM-3:O	FF →GOOD 123456789	123456789
HV:OFF	FIBER:[S POSI.BLINK:OFF PC	J] Ø1.0mm SITION:OFF

- (2) ENTER キーを押します。
- ➡ 発振器に内部アパーチャ(オプション)が取り付けてある場合は、1サイズ上のコ ア径を設定します。
- ⇒ 設定したコア径に対し、レーザ出力条件(PEAK、FLASH ms/%、REPEAT)が合わない場合は、エラー No.51/FIBER SETTING ERROR(光ファイバ許容値超過)またはエラー No.48/FIBER OVERRATE(光ファイバ許容値超過)が表示されますので、コア径の設定を変更してください。コア径に対するレーザ出力条件については、設置・準備編第2章「光ファイバの最大入射エネルギーおよびパワーの目安」P.44を参照してください。

〈注意〉

- ・光ファイバの端面に汚れやほこりが付いていると、エラー表示がない場合でもファイ バ端面を損傷する恐れがあります。光ファイバを使用しないときはキャップを付けて ください。
- ・GIファイバを使用すると、条件(端面が受けるエネルギー密度など)によっては、エラー 表示がない場合でもファイバ端面を破損することがあります。
- ファイバ端面を破損した場合、接続している入射ユニットや出射ユニットのレンズが 汚れていることがあります。点検をしてクリーニングを行ってください。なお、入射 ユニットを取り外した場合はファイバ入射調整が必要です。

出力状況確認画面を設定する(POWER MONITOR 画面)

POWER MONITOR 画面の設定方法を説明します。この画面では、出力されたレーザ光の エネルギー測定値を確認するほか、モニタするエネルギーの範囲を設定したり、フラッ シュランプ投入電力の上限値を設定します。

レーザ光のエネルギー測定値を確認する

レーザ光を出力すると自動的に POWER MONITOR 画面が表示され、エネルギー測定値 が表示されます。また、登録済みの SCHEDULE 番号を入力して、該当する SCHEDULE 番号で最後に出力したレーザ光のエネルギー測定値を確認することもできます。

(1)「SCH.#」にカーソルを移動し、ONまたはOFFキーを押して表示する
 SCHEDULE番号を入力します。

(2) ENTER キーを押します。

入力した SCHEDULE で最後に出力したレーザ光のエネルギー測定値が表示されます。

-POWER MO	NITOR SCH	ı.#02 ⊭∠	:OFF WATER	28°C
ENERGY	12.5J	HIGH	045.0J	
AVERAGE	12.5W		TNDUT DWR (150%
SHOT COUN GOOD COUN	т 1234567 Т 1234567	89 REFE	RENCE SET (070%
HV:OFF	POSI.BLI	NK:OFF	POSITION:	OFF

「」にカーソルを移動して ON キーを押すと、レーザ光が波形でグラフ表示されます。

モニタするレーザエネルギーの範囲を設定する

モニタするエネルギーの上限値と下限値を設定します。ここで設定した範囲が、許容エ ネルギー範囲となります。

(1)「HIGH」にカーソルを移動し、ON または OFF キーを押して上限値を設定します。

(2)「LOW」にカーソルを移動し、ON または OFF キーを押して下限値を設定します。

-POWER MONITOR SCH.#02 ₩:OFF WATER 28°C				
ENERGY	12.5J	HIGH	045.03	
	10 5	LOW	000.05	
AVERAGE	12.5W	LAMP	INPUT PW	r 000%
SHOT COUN	т 123456789	REFE	RENCE SE	т 000%
GOOD COUNT 123456789				
HV:OFF	POSI.BLINK	:OFF	POSITIO	N:OFF

(3) ENTER キーを押して、設定した数値を確定します。

⇒ レーザ光が設定した許容エネルギー範囲から外れると、モニタ異常が出力されます。

ランプ投入電力の上限値を設定する

フラッシュランプに投入する電力の最大値を設定します。設定した値を超えると、フラッ シュランプの交換を促す画面が表示されます。

(1)「REFERENCE SET」にカーソルを移動し、ON または OFF キーを押して、ランプ 投入電力の上限値の割合(%)を設定します。

⇒「LAMP INPUT PWR」(ランプ投入電力)に 80% 以上が表示された状態で使用すると、 フラッシュランプの交換サイクルが短くなることがあります。

-POWER MONITOR SCH.#02 ⊭:OFF WATER 28°C			
ENERGY	12.5J	HIGH	045.03
		LOW	000.01
AVERAGE	12 5W		
	TC.JW	LAMP	INPUT PWR 000%
SHOT COUN	IT 123456789	REFE	RENCE SET 000%
GOOD COUNT 123456789			
HV:OFF	POSI.BLINK	:OFF	POSITION:OFF

(2) ENTER キーを押して、設定した数値を確定します。

設定した上限値の割合が登録され、上限値を超えるとフラッシュランプの交換を促す画 面が表示されます。

WATER LAMP INPUT POWER LIMIT !!	28°C
CHECK THE LAMPS !!	
(LAMP INPUT PWR 095%)	
V:OFF POSI.BLINK:OFF POSITION	:OFF

この画面が表示されると、外部出力信号 EXT.I/O(1) コネクタの出力用 9 番ピン(ランプ 投入上限)が、開路出力します。

TROUBLE RESET キーを押すと画面表示が解除されます。

➡ 画面表示が解除されても、EXT.I/O(1) コネクタの出力用9番ピンは開路出力の状態です。次回のフラッシュランプ点灯時に、供給電力がランプ投入電力の上限値を下回ると、開路出力の状態が閉路に戻ります。電源を再投入することによっても、閉路に戻ります。

71

ML-2050A/2051A/2150A

設定値を保護する(PASSWORD 画面)

パスワードを設定して、設定値を保護する方法を説明します。パスワードを設定し有効 にしておくと設定値が保護され、管理者以外は変更できないようになります。

PASSWORD 画面を表示する

(1) SCHEDULE 画 面、STATUS 画 面、POWER MONITOR 画 面 の い ず れ か で、 TROUBLE RESET キーと CURSOR キー (\triangle)を同時に押します。 PASSWORD 画面が表示されます。

PASSWORD	MODE	WATER 28	°C
PASSWORD:[0000]		CHANGE VALUE:0	N
HV:OFF	POSI.BLINK:	OFF POSITION:0	FF

現在のパスワードを設定する

(1)「PASSWORD」にカーソルを移動し、ON または OFF キーを押して設定されてい るパスワードを入力します。

⇒ 初期値として「REDS」が設定されています。これを変更して新しいパスワードを入入力するときは、「REDS」と入力してください。

⇒ 設定できるパスワードは4文字の数字またはアルファベットです。

(2) ENTER キーを押します。

入力したパスワードが正しいと、新規パスワード設定画面が表示されます。

PASSWORD MODE	water 28°C
PASSWORD:[****]	CHANGE VALUE:ON NEW PASSWORD:[0000]
HV:OFF POSI.BL	INK:OFF POSITION:OFF

入力したパスワードが間違っていると、PASSWORD MISMATCH 画面が表示されますの で、再度、設定されているパスワードを入力します。TROUBLE RESET キーを押して最 初の画面に戻り、再度入力することもできます。 設置・準備編

パスワードを有効にする

(1)「CHANGE VALUE」にカーソルを移動し、OFF キーを押します。
 パスワードが有効になって一部の設定項目が保護され、変更不可能になります。
 ⇒ パスワードを設定しても「CHANGE VALUE」を OFF にしないと設定項目は保護されず、パスワードを知らない人でも設定値を変更できる状態になります。

PASSWORD MODE	WATER28°C
PASSWORD:[****] CHAN NEW RE-WRITE	GE VALUE:OFF PASSWORD:[****] PASSWORD:[0000]
HV:OFF POSI.BLINK:OFF	POSITION:OFF

(1)「NEW PASSWORD」にカーソルを移動し、ON または OFF キーを押して新しい パスワードを入力します。4 文字の数字またはアルファベットを入力してください。

(2) ENTER キーを押します。

確認画面が表示されます。

PASSWORD MODE	water28°c
PASSWORD:[****]	CHANGE VALUE:ON NEW PASSWORD:[****] RITE PASSWORD:[0000]
HV:OFF POSI.BLIN	K:OFF POSITION:OFF

(3)「RE-WRITE PASSWORD」にカーソルを移動し、同じパスワードを入力して ENTER キーを押します。

設定したパスワードが登録され、PASSWORD 画面に戻ります。

パスワードが一致しないと、PASSWORD MISMATCH 画面が表示されますので、再度、
同じパスワードを入力します。TROUBLE RESET キーを押して確認画面に戻り、再度入 力することもできます。

保護される項目は以下のとおりです。

表示画面	項目
SCHEDULE 画面	 SCH.# (スケジュール番号) FORM (FIX/FLEX の波形切り替え) PEAK (レーザ出力ピーク値) REPEAT (1秒間のレーザ光出力回数) SHOT (レーザ光の出力回数) >SLOPE (FLASH1 にアップスロープする時間) FLASH1 (第1レーザの出力時間 ms と出力値 %) FLASH2 (第2レーザの出力時間 ms と出力値 %) FLASH3 (第3レーザの出力時間 ms と出力値 %) >SLOPE (最終 FLASH にダウンスロープする時間) Point1 ~ 20 (FLEX の場合の各ポイントの出力時間 ms と出力値 %)
STATUS 画面	RESET SELECT → SHOT (レーザ光の総出力回数 SHOT COUNT のリセット) → GOOD (レーザ光の適正出力回数 GOOD COUNT のリセット) PRESET → SHOT (レーザ光の総出力回数 SHOT COUNT のカウント通知設定) → GOOD (レーザ光の適正出力回数 GOOD COUNT のカウント通知設定) FIBER (SI/GI およびコア径の設定)
POWER MONITOR 画面	SCH.# (スケジュール番号) ↓ (波形のグラフ表示) HIGH (モニタするレーザエネルギーの上限値) LOW (モニタするレーザエネルギーの下限値) REFERENCE SET (ランプ投入電力の上限値)
各画面共通	POSI.BLINK (ガイド光の点滅または点灯の ON/OFF)

(4) ENTER キーを押します。

上記の設定項目が変更不可能になり、設定値が保護されます。

⇒ 設定値を変更するときは、パスワードを入力してパスワード設定画面を表示し、 「CHANGE VALUE」を ON にします。

レーザエネルギー測定値(J)の精度を切り替える (INITIAL 画面)

INITIAL 画面で、レーザ光のエネルギー(J)の測定精度を切り替える方法を説明します。 この設定によって、通常は 0.1J 単位の測定値を 0.01J 単位に切り替えることができ、よ り微細な溶接作業に対応することができます。

INITIAL 画面を表示する

 CONTROL キースイッチを OFF にして、MENU キーを押したまま MAIN POWER スイッチを ON にします。

⇒ MENU キーは、SELF-CHECK > 画面が表示されるまで押しています。

電源が入って POWER ランプが点灯し、SELF-CHECK > 画面が表示されます。

WATER 28°C

AUTO-START

SELF-CHECK >

セルフチェックが終わると INITIAL 画面が表示されます。

INITIALIZE:OFF	WATER 28°C
TEMP CONT 30°C	ΔΙΔΡΜΙ20°C Η40°C
POSITION AUTO OFF	60min
SW1-12345678 SW2-2	L2345678 Sw3-12345678
ON ON	ON
OFF OFF OFF	OFF

⇒ CONTROL キースイッチが OFF になっていないと、INITIAL 画面は表示されません。

● 測定値(J)の精度を切り替える

(1)「SW1」の「6」にカーソルを移動し、ON キーを押します。

INITIALIZE:0	FF	WATER 28°C
TEMP CONT 3		120°C H40°C
POSITION AUT	FO OFF 60min	
SW1-12345678	SW2-12345678	SW3-12345678
ON 📕	ON	ON
OFF	OFF	OFF

〈注意〉

測定値の精度を切り替えると、SCHEDULEの設定値が初期化されます。誤操作を防ぐ ために、SW1の8番をONにしておかないと設定を変更できないようにしてあります。 SW1の6番を変更してENTERキーを押すと、SW1の8番はOFFに戻ります。初期化が 完了するまで約15秒かかります。その間、POWERランプが点滅します。点滅が完了し てから電源を切ってください。

● 設定を確定する

(1) ENTER キーを押して、設定を確定します。
 POWER MONITOR 画面の測定値の精度が切り替わります。

切り替え前の設定例(SW1-6 が OFF)

-POWER MO	NITOR SCH	.#02 ₩:OFF WATER 28°C
ENERGY	12.5J	HIGH 045.0J
		LOW 000.0J
AVERAGE	12 5w	
	TC: JW	LAMP INPUT PWR 050%
SHOT COUN	т 12345678	39 REFERENCE SET 070%
GOOD COUN	IT 12345678	39
	DOCT DUTN	
HV:UFF	POST.BLIN	IK:OFF POSITION:OFF

切り替え後の設定例(SW1-6がON)

	-POWER MONITO	OR SCH.#02↓	∠:OFF WATER 28 [°]	Ċ
	ENERGY ()		GH 45.00J	
			V 00.00J	
		LAM	IP INPUT PWR 0009	%
	SHOT COUNT 12	3456789 REF	ERENCE SET 100%	6
	GOOD COUNT 12	3456789		
	HV:OFF POS	I.BLINK:OFF	POSITION:OFF	
1				

〈注意〉

SW1の6番をONにすると、SCHEDULE画面のレーザ出力ピーク値「PEAK」に設定できる最大値は、機種に関わらず、1.0kWになります。

パルス幅の設定範囲を切り替える(INITIAL 画面)

INITIAL 画面で、レーザ光のパルス幅(レーザ出力時間 ms)の設定範囲を切り替える方 法を説明します。

この設定によって、通常は 0.1ms ステップのパルス幅を 0.02ms ステップに切り替える ことができ、より微細な溶接作業に対応することができます。

🌒 INITIAL 画面を表示する

(1) CONTROL キースイッチを OFF にして、MENU キーを押したまま MAIN POWER スイッチを ON にします。

⇒ MENU キーは、SELF-CHECK > 画面が表示されるまで押しています。

電源が入って POWER ランプが点灯し、SELF-CHECK > 画面が表示されます。

AUTO-START

SELF-CHECK >

WATER 28°C

セルフチェックが終わると INITIAL 画面が表示されます。

```
INITIALIZE:OFF WATER 28°C
NETWORK #00
TEMP CONT 30°C ALARM L20°C H40°C
POSITION AUTO OFF 60min
SW1-12345678 SW2-12345678 SW3-12345678
ON ON ON ON
OFF OFF OFF OFF
```

➡ CONTROL キースイッチが OFF になっていないと、INITIAL 画面は表示されません。

・ パルス幅の設定範囲を切り替える

(1)「SW1」の「7」にカーソルを移動し、ON キーを押します。

INITIALIZE:C	FF		WAT	ER 28°C
NETWORK #00				
TEMP CONT 3)°C A	LARM	L20°C	н40°С
POSITION AUT	ro off 6	50min		
SW1-12345678	SW2-123	345678	SW3-1	L2345678
ON 🛛	ON		ON	
OFF	OFF		OFF	

2

〈注意〉

パルス幅の設定範囲を切り替えると、SCHEDULEの設定値が初期化されます。誤操作を 防ぐために、SW1の8番をONにしておかないと設定を変更できないようにしてありま す。SW1の7番を変更してENTERキーを押すと、SW1の8番はOFFに戻ります。初期 化が完了するまで約15秒かかります。その間、POWERランプが点滅します。点滅が完 了してから電源を切ってください。

● 設定を確定する

(1) ENTER キーを押して、設定を確定します。 SCHEDULE 画面のパルス幅の設定範囲が切り替わります。

切り替え前の設定例 (SW1-7 が OFF)

-SCH.#00 [FORM:FIX] \simeq 11.4J WATER 28°C $\downarrow \simeq$:OFF PEAK=02.00kW REPEAT= 00pps 7SLOPE 00.5ms SHOT =0000 FLASH1 01.6ms 040.0% FLASH2 02.2ms 100.0% FLASH3 01.2ms 020.0% \searrow SLOPE 00.7ms HV:OFF POSI.BLINK:OFF POSITION:OFF

切り替え後の設定例(SW1-7がON)

```
-SCH.#00 [FORM:FIX ] \approx 11.4J WATER 28°C

\downarrow \sim:OFF PEAK=02.00kW REPEAT= 00pps

7SLOPE 0.00ms SHOT =0000

FLASH1 0.00ms 000.0%

FLASH2 0.00ms 000.0%

FLASH3 0.00ms 000.0%

\RightarrowSLOPE 0.00ms

HV:OFF POSI.BLINK:OFF POSITION:OFF
```

⇒ FLEX 画面でも同様に切り替わって表示されます。

〈注意〉

・SW1-7の設定で、「FLASH1」+「FLASH2」+「FLASH3」の値は次のようになります。

設定	最大値 (ms)	最小値 (ms)	ステップ (ms)
ON	5.00	0.20	0.02
OFF	10.0	00.2	00.1

・SW1-7をONにした場合は、0.02msステップで値を設定してください。

概要編

섥

2. レーザ光の分岐設定

本装置では、内蔵された分岐ミラーと時間分岐ユニットの働きで、1本のレーザ光を、 複数の光ファイバに同時に出力したり1本の光ファイバだけに出力することができます。 ここでは、本装置の分岐仕様について説明します。

レーザ光の分岐について

レーザ光の分岐仕様には、同時分岐と時間分岐があります。

同時分岐は、分岐ミラーによってレーザ光を複数に分岐して複数の光ファイバに伝送し、 同時に複数点の溶接を行います。レーザ光は複数に分岐するため、それぞれのレーザ出 力は弱くなります。

時間分岐は、時間分岐ユニットのミラーで反射された1本のレーザ光を1本の光ファイバに伝送し、溶接を行います。選択した1つの分岐シャッタが開いて、レーザ光は分岐することなく100%のエネルギーで出力されます。

ML-2050A/2051A/2150A本体には、分岐仕様に応じた開閉センサ付き分岐シャッタと 時間分岐ユニットが内蔵され、出荷時には本体のディップスイッチで分岐方法が初期設 定されています。

分岐方法	対応する型式
単一 :1本の光ファイバに出力	ML-2 🗆 5 🗆 A-010
同時2分岐:2本の光ファイバに同時に出力	ML-2 🗆 5 🗆 A-020
同時3分岐:3本の光ファイバに同時に出力	ML-2 🗆 5 🗆 A-030
時間2分岐:2本の光ファイバのうち1本を任意に選択して出力	ML-2 🗆 5 🗆 A-002
時間3分岐:3本の光ファイバのうち1本を任意に選択して出力	ML-2 🗆 5 🗆 A-003

本装置では、以下の5種類の分岐仕様が用意されています。

上記の時間分岐では、「BEAM-1」~「BEAM-3」に ON を設定して分岐シャッタを開くと、 同時に時間分岐ユニットが自動的に作動してレーザ光を分岐します。

分岐シャッタを開いても時間分岐ユニットが作動しないようにし、上記以外の分岐方法 でレーザ光を出力することができます。この設定は、本体内部のディップスイッチで分 岐シャッタの独立制御を設定してから、作動する分岐シャッタと時間分岐ユニットを、 ディップスイッチの切り替えで設定します。

⇒ 分岐シャッタ独立制御の設定方法は、「分岐シャッタを独立制御する」P.81 を参照 してください。 分岐シャッタを1つ開いて、1本の光ファイバだけにレーザ光を出力します。

レーザ光は分岐ミラーで反射し、 分岐シャッタ1が開いて伝送されます。

同時2分岐/同時3分岐

内蔵された分岐シャッタの数までレーザ光を分岐し同時に出力します。同時2分岐では、 2つの分岐シャッタを開きレーザ光を2本に分岐して同時に出力します。同時3分岐では、 3つの分岐シャッタを開きレーザ光を3本に分岐して同時に出力します。

同時3分岐

レーザ光は分岐ミラーで反射して分岐し、分岐 シャッタ1、2が開いて同時に伝送されます。

レーザ光は分岐ミラーで反射して分岐し、分岐 シャッタ1、2、3が開いて同時に伝送されます。

時間2分岐/時間3分岐

内蔵された分岐シャッタの中から任意の1つを開いて、レーザ光を出力します。例えば、 分岐シャッタ2を開くと、入射ユニット2に接続した光ファイバにレーザ光を出力しま す。2つ以上の分岐シャッタは開かないため、分岐シャッタを2つ開く操作が行われた 場合は、No.の小さい分岐シャッタが優先されます。

レーザ光は時間分岐ユニットの作動で分岐ミラー で反射し、分岐シャッタ2が開いて伝送されます。

レーザ光は時間分岐ユニットの作動で分岐ミラーで 反射し、分岐シャッタ3が開いて伝送されます。

STATUS 画面で分岐を操作する

STATUS 画面で分岐シャッタの開閉を操作する方法を説明します。

STATUS 画面では、レーザ光を伝送する分岐シャッタを開閉する操作をします。 本装置では5種類の分岐仕様が用意され、出荷時の仕様に応じて本体内部のディップス イッチが以下のように初期設定されています。

分岐の種類	ディップスイッチ(SW1)の設定			
	6	7	8	
単一	OFF	OFF	OFF	
同時2分岐	OFF	OFF	ON	
同時3分岐	OFF	ON	OFF	
時間2分岐	ON	OFF	OFF	
時間3分岐	ON	OFF	ON	

操作手順

(1)「BEAM-1」「BEAM-2」「BEAM-3」で、接続した光ファイバに対応した BEAM にカー ソルを移動し、ON キーを押します。

「BEAM-1」「BEAM-2」「BEAM-3」は、それぞれ分岐シャッタ 1、2、3 および入射ユニット 1、2、3 に対応しています。

-STATUS [F	ANEL CONTROL]	WATER 28°C
BEAM-1:ON	RESET SELECT	PRESET
BEAM-2:OFF	→SHOT 123456789	123456789
BEAM-3:OFF	→GOOD 123456789	123456789
	FIBER:[S	I] ø1.0mm
HV:OFF	POSI.BLINK:OFF PO	SITION:OFF

⇒ 表示される画面は分岐仕様により異なります。単一仕様では「BEAM-1」、同時2分 岐および時間2分岐では「BEAM-1」「BEAM-2」、同時3分岐および時間3分岐で は「BEAM-1」「BEAM-2」「BEAM-3」が表示されます。

(2) ENTER キーを押します。

ON を設定した分岐シャッタが開き、レーザ光が伝送される状態になります。 OFF を設定した分岐シャッタは開かないため、レーザ光は遮断されます。

分岐シャッタを独立制御する

ディップスイッチの設定で、分岐シャッタを独立制御に設定する方法を説明します。
 ⇒ 分岐仕様の変更は、通常、当社エンジニアが行います。

「BEAM-1」~「BEAM-3」に ON を設定して分岐シャッタを開くと、分岐シャッタと時間 分岐ユニットが自動的に作動してレーザ光が伝送されます。分岐シャッタを独立制御す ると、「BEAM」に ON を設定しても時間分岐ユニットと分岐シャッタが連動しなくなる ため、あらかじめ用意されている 5 種類の分岐仕様にはない分岐方法でレーザ光を伝送 することができます。

ディップスイッチは、本体内部の CPU 基板上に、SW1、SW4、SW2 の3 種類が配置されています。分岐シャッタは SW1、時間分岐ユニットは SW2 で設定します。分岐シャッタ独立制御の機能は SW1 の6、7、8 番に割り当てられていますので、本体側面のカバーを外し、SW1 で ON/OFF を切り替えることにより設定します。

任意の分岐シャッタを作動させる

(1) SW1 の 6、7、8 番を ON にして分岐シャッタを独立制御にしてから、SW1 で内蔵している分岐シャッタのスイッチ番号を ON にします。

(2) STATUS 画面で、作動させる「BEAM」(分岐シャッタ)を ON にします。ON にした分岐シャッタが作動します。

任意の時間分岐ユニットを作動させる

(1) SW1 の 6、7、8 番を ON にして分岐シャッタを独立制御にしてから、SW2 で内蔵している時間分岐ユニットのスイッチ番号を ON にします。

(2) STATUS 画面で、作動させる「MIRR」(時間分岐ユニット)を ON にします。 ON にした時間分岐ユニットが作動します。

例えば、単一+同時2分岐の場合は、SW1とSW2を以下のようにし、STATUS 画面で 「BEAM-1」~「BEAM-3」と「MIRR-1」をON にすると、レーザ光は分岐シャッタ1か ら単一で、分岐シャッタ2、3から同時2分岐で出力します。

3. レーザスタート信号・条件信号受付時間の変更

外部入出力信号による制御 EXTERNAL CONTROL の場合に、本体側面の内部にあるディップスイッチの設定により、EXT.I/O(1) コネクタに入力されるレーザスタート信号と条件 信号の受付時間を変更する方法を説明します。

レーザスタート信号の受付時間とは、レーザスタート信号が入力されてから実際にレー ザ光が出力されるまでの時間をいいます。条件信号の受付時間とは、SCHEDULE 番号を 選択するための条件信号 1、2、4、8、16 などの信号が入力されてから、本装置が条件 を確定するまでの時間をいいます。

以下はレーザスタート信号の受付時間が 16ms の場合と 4ms の場合のレーザ光の出力タ イミングを示したタイムチャートです。

⇒ レーザスタート信号の受付時間と条件信号の受付時間は共通です。それぞれに異なる時間を設定することはできません。

ディップスイッチは、本体内部の CPU 基板上に、SW1、SW4、SW2 の 3 種類が配置されています。側面のカバーを外して、SW4 の 1、2 番スイッチで ON/OFF を切り替える ことによって、受付時間を変更します。

受付時間は 1ms、4ms、8ms、16ms の 4 種類が用意され、出荷時は 16ms に設定され ています。

変更する場合は、SW4の1、2番スイッチのON/OFFを以下のように切り替えます。

受付時間	1番	2番
1ms	ON	ON
4ms	OFF	ON
8ms	ON	OFF
16ms	OFF	OFF

⇒ レーザスタート信号の受付時間は通常 16ms ですが、必要に応じて短くすることも可能です。

操作手順

本体側面のカバーを外し、ディップスイッチ SW4 の 1 ~ 2 番で ON/OFF を設定します。

例えば、受付時間を 4ms にするときは 1 番を OFF、2 番を ON にします。

例では、レーザスタート信号と条件信号が 4ms で受け付けられるので、条件信号入力後 4ms 後に条件が確定し、レーザスタート信号入力後 4ms 後にレーザ光が出力されます。

4. ファイバセンサ付き出射ユニット (オプション)の機能設定

ファイバセンサ付き出射ユニット(オプション)を使用する場合は、本体側面の内部に あるディップスイッチで、機能を有効にするための設定をします。 ここでは、ファイバセンサ付き出射ユニットの機能の設定方法を説明します。

ファイバセンサ付き出射ユニットには次の3つの機能があります。 ファイバ破断検出:レーザ出力中にファイバが折れたことを検出します。 ファイバ装着確認:出射ユニットにファイバが正しく装着されていることを確認します。 LED 点灯確認 :高電圧が入っているときに、出射ユニットの HV-ON ランプが点灯し ていることを確認します。

ディップスイッチは、本体内部の CPU 基板上に、SW1、SW4、SW2 の 3 種類が配置されています。側面のカバーを外して、SW1 の 3 番および SW2 の 3 ~ 8 番で ON/OFF を切り替えて、機能を設定します。

カハー 育団のネンを被め、いったん子前に 引いた後、斜め後ろへ引き出す

操作手順

(1) ファイバ破断検出機能を設定します。 本体側面のカバーを外し、SW1の3番スイッチをONにします。 ファイバ破断検出機能が設定され、レーザ光の出力中に光ファイバの断線や端面の損傷 を検出するとエラー No.38~40/FIBER SENSOR1~3 TROUBLE(光ファイバ断線)が 表示されます。

⇒ 1番、2番スイッチには触れないでください。

(2) ファイバ装着確認機能を設定します。

SW2 の 3 ~ 5 番のうち、使用する出射ユニットの番号をすべて OFF に、それ以外の スイッチを ON にします。

ファイバ装着確認機能が設定され、光ファイバまたは異常検出用のケーブルが抜けてい るとエラー No.32/FIBER SWITCH TROUBLE(光ファイバ未接続)が表示されます。

⇒ ファイバ装着確認機能は、SW1の3番スイッチをONにしてファイバ破断検出機能 を設定してから設定してください。

(3) LED 点灯確認機能を設定します。

SW2 の 6 ~ 8 番のうち、使用する出射ユニットの番号をすべて OFF に、それ以外の スイッチを ON にします。

LED 点灯確認機能が設定され、指定した出射ユニットの LED(HV-ON ランプ)点灯が確認されない場合はエラー No.33/E.INDICATOR TROUBLE(OUTPUT UNIT)(エミッションランプ異常)が表示されます。

➡ LED 点灯確認機能は、SW1 の 3 番スイッチを ON にしてファイバ破断検出機能を 設定してから設定してください。

(2)(3)の設定例として、出射ユニット1~3番を使用する場合は、SW2の3~8番スイッチを OFF にします。

概要編

設置・準備症

操作編

1. 操作の流れ

操作パネルによるレーザ溶接の操作の流れを説明します。

レーザ溶接の操作は、操作パネルから制御する方法 (PANEL CONTROL)、接続した PLC (Programmable Logic Controller) などから外部入出力信号によって制御する方法 (EXTERNAL CONTROL)、接続したパソコンなどからコマンドを送信して制御する方法 (RS-485 CONTROL) があります。

PANEL CONTROL では、操作パネルを使って溶接条件を設定し、レーザ光を出力します。

2. 操作パネルの機能

操作パネルの機能を説明します。

PANEL CONTROL では、操作パネルのキーを使って溶接条件を設定し、LASER START/ STOP ボタンを押してレーザ光を出力します。出力後、POWER MONITOR 画面でレーザ 出力エネルギーを確認することができます。

⇒ オプションのレーザコントローラを接続すると、同じ方法でレーザコントローラの 操作パネルを使い、装置から離れた場所でレーザ溶接の操作を行うことができます。 レーザコントローラ使用時は、本体の操作パネルおよび LASER START/STOP ボタ ンは使用できなくなります。EMERGENCY STOP ボタンと CONTROL キースイッチ は使用できます。

操作パネル各部の機能

 LASER START/STOP (ボタン) EMISSION (ランプ) 	レーザ光出力の準備が完了した状態*でボタンを押すと、レーザ光を出 力します。レーザ光の繰り返し出力中には、再度ボタンを押すと繰り返 し出力を停止します。 * EXT.I/O(1) コネクタの 23 番ピン(制御切替)を開路し、高電圧が 供給されて分岐シャッタが開いている状態 レーザ発振部に高電圧がかかると、EMISSION(発射)ランプが点灯し ます。
② MENU (キー)	液晶ディスプレイの表示画面を切り替えます。キーを押すと、SCHEDULE 画面、STATUS 画面、POWER MONITOR 画面の順に画面が切り替わります。
③ ENTER (キー)	設定した数値や ON/OFF の指定を確定します。 データ変更後は、必ず ENTER キーを押して設定値を確定します。確定 しないと、数秒後に設定前の値に戻ります。
④ ON (+) OFF (-) (キー)	設定項目の ON/OFF を指定します。 また、カーソル位置の数値またはアルファベットを昇順(ON キー)ま たは降順(OFF キー)に変更します。
⑤ CURSOR (キー)	画面上でカーソル()を上下左右に移動します。
⑥ TROUBLE RESET (キー)	異常時の処理後、異常表示を解除して画面をリセットします。

3. 操作手順

操作パネルから制御するレーザ溶接の操作手順を説明します。

- ⇒ 溶接条件の設定について詳細は第2章「1.溶接条件の設定」P.53、コネクタの機能 については、第4章「3.コネクタの機能」P.99を参照してください。
- ⇒ 電源を入れる前に、EXT.I/O(1) コネクタの 23 番ピン(制御切替)を開路し、外部 入力信号を無効にしておきます。これにより、外部入力信号による制御(EXTERNAL CONTROL)が無効になり、STATUS 画面の「-STATUS」に「PANEL CONTROL」と 表示されます。

🎈 装置を起動する

本体前面の MAIN POWER スイッチを ON にします。
 電源が入って POWER ランプが点灯し、SELF-CHECK > 画面が表示されます。

AUTO-START	water 28°c
SELF-CHECK >	

分岐シャッタの開閉、メモリ(サムチェックおよびデータ範囲)、チャージトラブルが自動チェックされ、異常がなければ KEY-SWITCH ON > 画面が表示されます。

AUTO-START	water 28°c
KEY-SWITCH ON >	

(2) CONTROL キースイッチを ON にします。操作ができる状態になり、COOLER ON > 画面が表示されます。

WATER 28°C AUTO-START < WAIT!! >
KEY-SWITCH ON > COOLER ON >
DEIONIZE 9.99MΩCM (READY) WATER TEMPERATURE (NORMAL) LASER POWER MONITOR (NOT READY)

表示項目の見方	
WATER	冷却水の温度が表示されます。SELF CHECK が終了すると温度測定が始まって、測定値が表示されます。
DEIONIZE	冷却水の抵抗率が表示されます。 NOT READY:3.00MΩ・cm 未満で表示 READY :3.00MΩ・cm 以上で表示
WATER TEMPERATURE	冷却水の温度の状態が表示されます。 LOW :規定値未満で表示 (規定値とは5℃または温度勾配△tの値。自動的に判定される。) NORMAL:規定値~40℃で表示 HIGH :41℃以上で表示
LASER POWER MONITOR	パワーモニタユニットのセンサの状態が表示されます。 NOT READY:ウォームアップ中に表示 READY :ウォームアップ完了で表示

AUTO-START < WAIT!! >	water 28°C			
KEY-SWITCH ON > COOLER	ON >			
DEIONIZE 9.99MΩcm (READY) WATER TEMPERATURE (NORMAL) LASER POWER MONITOR (READY)				

上の画面のように、「DEIONIZE」が(READY)、「WATER TEMPERATURE」が(NORMAL)、 「LASER POWER MONITOR」が(READY)になると、高電圧が入って充電が始まり HV-ON > 画面が表示されます。

AUTO-START	<	WA	AIT!! >	water 28°c
KEY-SWITCH	ON	>	COOLER	ON >HV-ON >

充電が完了すると 0.5 秒間、READY!! 画面が表示されます。

AUTO-START	<	WA	AIT!!	>	W	ATE	ER 28	°C	
KEY-SWITCH	ON	>	COOLE	R	ON	>	HV-C	N	>
READY!!									

READY!! 画面が表示された後、前回終了時の画面(SCHEDULE 画面・STATUS 画面・ POWER MONITOR 画面のいずれか)が表示されます。

● 出力条件を設定する

ここでは例として、SCHEDULE 番号 #05、レーザ出力ピーク値 2.50kW、FLASH1 レー ザ出力時間 3.6ms /出力値 80%、アップスロープ 0.6ms を設定する手順を説明します。

(1) MENU キーを押して SCHEDULE 画面を表示します。

(2)「-SCH.#」にカーソルを移動し、ON または OFF キーを押して SCHEDULE 番号を 設定します。

ここでは #05 を設定します。

- ⇒ SCHEDULE 番号は、#00 ~ #31 まで 32 種類の条件が設定できます。「FORM」で は定形波形「FIX」または任意波形「FLEX」が指定できます。
- ⇒ 登録済みの SCHEDULE 番号を入力すると、設定した出力条件が表示されます。

(3)「PEAK」にカーソルを移動し、ON または OFF キーを押してレーザ出力ピーク 値を設定します。

ここでは、2.50kW を設定します。

```
-SCH.#05 [FORM:FIX ] ≈ 0.0J WATER 28°C

↓ ∴OFF PEAK=02.50kW REPEAT= 00pps

>SLOPE 00.0ms SHOT =9999

FLASH1 00.0ms 000.0%

FLASH2 00.0ms 000.0%

FLASH3 00.0ms 000.0%

SLOPE 00.0ms

HV:ON POSI.BLINK:OFF POSITION:OFF
```

〈注意〉

設定できるレーザ出力ピーク値の最大値は、機種によって異なります。また、レーザ出 力値の設定(FLASH の %)では、「最大値× 100%」を超える設定はできません。

ML-2050A:4.0kW	ML-2051A:2.5kW	ML-2150A:6.0kW
----------------	----------------	----------------

(4)「FLASH1」(第1レーザ)の「00.0ms」にカーソルを移動し、ON または OFF キー を押してレーザ出力時間を設定します。

ここでは、「FLASH1」に 03.6ms を設定します。

〈注意〉

レーザ出力時間は、次の値になるように設定してください。

 $0.20 \text{ms} \leq \text{FLASH1} + \text{FLASH2} + \text{FLASH3} \leq 10.0 \text{ms}$

(5)「オSLOPE」にカーソルを移動し、ON または OFF キーを押して、レーザ光が FLASH1 にアップスロープする(レーザ出力が徐々に強くなっていく)時間を設定し ます。 ここでは、00.6ms を設定します。

〈注意〉

「^SLOPE」は、次の値になるように設定してください。

```
↗SLOPE ≤ FLASH1
```

「FLASH2」や「FLASH3」を設定した場合には、レーザ光が最終 FLASH にダウンスロー プする(レーザ出力が徐々に弱くなっていく)時間も設定します。「↘SLOPE」は、次の 値となるように設定してください。

ightarrowSLOPE \leq FLASH1, FLASH2, FLASH3

(6)「FLASH1」の「000.0%」にカーソルを移動し、ON キーまたは OFF キーを押してレー ザ出力値(%)を設定します。

ここでは、「FLASH1」に 080.0% を設定します。

- ⇒ レーザ出力値は、設定したレーザ出力ピーク値を 100%とした時の割合(%)を設定します。例では、「PEAK=2.50kW」の80%となるので、実際のレーザ出力値は 2.0kW になります。この場合、「PEAK=2.00kW」「FLASH1 03.6ms 100%」と設定しても実際のレーザ出力値は同じになります。
- (7) ENTER キーを押して、設定した溶接条件を確定します。

- → レーザ光の連続出力回数を設定する場合は、「REPEAT」で1秒間の出力回数を00
 ~ 30pps (pulse per second)の範囲で設定します。0は単発出力となります。
- ⇒ レーザ光の出力回数を設定する場合は、「SHOT」で 0000 ~ 9999 までの範囲で設 定します。「REPEAT」が 0 以外の設定で「SHOT」が 0 の場合は、LASER START/ STOP ボタンを押すまで、レーザ光を出力し続けます。

〈注意〉

設定した溶接条件は、ENTER キーを押さないと確定しません。設定が終了したら、必ず ENTER キーを押してください。

設置・準備編

操作編

鎱

レーザ光を出力する

レーザ光出力作業中は、必ず YAG レーザ(1064nm)用の保護メガネをかけてください。レー ザ光が直接目に入ると失明する恐れがあります。

(1) MENU キーを押して STATUS 画面を表示します。

EXT.I/O(1) コネクタの 23 ピン(制御切替)を開路にしておくと、外部入力信号が無効 になり、STATUS 画面の「-STATUS」が「PANEL CONTROL」と表示されています。

-STATUS	NEL CONTROL] WATER 28	Ъ°С
BEAM-1:OFF	RESET SELECT PRESET	
BEAM-2:OFF	→SHOT 123456789 1234567	89
BEAM-3:OFF	→GOOD 123456789 1234567	89
	FIBER:[SI] ø1.0m	m
HV:ON P	OSI.BLINK:OFF POSITION:)FF

(2) ワーク(加工物)と出射ユニットの位置を調整し、ワークディスタンス(ワークと出射位置の距離)を適切にします。

(3)「BEAM-1」~「BEAM-3」(分岐シャッタ1~3)にカーソルを移動して ON キーを押し、使用する分岐シャッタを開きます。
 ここでは、「BEAM-1」に ON を設定します。分岐シャッタ1が開き、対応する SHUTTER ランプが点灯します。

_	-STATUS [P/	ANEL CO	NTROL]	WATER 28°C
(I	BEAM-1:ON	RESET	SELECT	PRESET
E	BEAM-2:OFF	→SHOT	123456789) 123456789
E	BEAM-3:OFF	→GOOD	123456789) 123456789
			FIBER:[SI] ø1.Omm
	HV:ON P	OSI.BLI	NK:OFF P	OSITION:OFF

⇒ 同時分岐にする場合は、使用する BEAM をすべて ON にして、分岐シャッタをすべて開きます。

(4)「POSITION」にカーソルを移動して ON キーを押し、ガイド光を出力します。 「POSITION」が ON と表示され、レーザ光が照射される位置にガイド光の赤い点が見え ます。赤い点の位置にレーザ光が照射されます。

-STATUS	[PANEL CON	TROL] V	VATER 28°C
BEAM-1:O	N RESET :	SELECT	PRESET
BEAM-2:O	FF →SHOT :	123456789	123456789
BEAM-3:O	FF →GOOD :	123456789	123456789
HV:ON	POSI.BLIN	FIBER:[S: K:OFF PO	[] ø1.0mm SITION:ON

(5) レーザ光の照射位置を確認します。

加工したい点とガイド光の赤い点がずれている場合は、出射ユニットまたはワークを動 かして位置を調整します。

(6) LASER START/STOP ボタンを押します。

レーザ光が出力されて、POWER MONITOR 画面が表示されます。

(7) 出力したレーザ光のレーザ出力エネルギー(J) と平均パワー(W) を確認します。

-POWER MONITOR SCH.#05 ⊭:OFF WATER 28°C					
ENERGY	12.53	HIGH 045.0J			
AVERAGE	12.5W	LAMP INPUT PWR 000%			
SHOT COUN GOOD COUN	т 12345678 т 12345678	39 REFERENCE SET 000%			
HV:ON	POSI.BLIN	NK:OFF POSITION:ON			

「↓」にカーソルを移動し ON キーを押すと、レーザ出力の数値がグラフ表示され、波形 で確認することができます。

-POWER MC ENERGY	NITOR SCH.#0	5 <u>2:00</u> WATER 28°C
AVERAGE	12.5W	
SHOT COUN GOOD COUN HV:ON	IT 123456789 IT 123456789 POSI.BLINK:C	DFF POSITION:ON

OFF キーを押すと数値表示に戻ります。

レーザ溶接を終了する

⚠ 注意

4

レーザ出力中やレーザ出力直後に MAIN POWER スイッチを OFF にしないでください。冷 却不足により、ランプや YAG ロッドが破損する恐れがあります。

(1) 各画面の「HV」にカーソルを移動して OFF キーを押します。 高電圧が切れます。

(2) CONTROL キースイッチを OFF にします。 キーが抜ける状態になります。

(3) MAIN POWER スイッチを OFF にします。電源が切れ、POWER ランプが消えます。

⇒ CONTROL キースイッチのキーはレーザ安全管理者に戻し、保管してもらいます。

1. 操作の流れ

外部入出力信号によるレーザ溶接(EXTERNAL CONTROL)の操作の流れを説明します。

レーザ溶接の操作は、操作パネルから制御する方法(PANEL CONTROL)、コネクタに接続した PLC* などから外部入出力信号によって制御する方法(EXTERNAL CONTROL)、 接続したパソコンなどから制御する方法(RS-485 CONTROL)があります。

外部入出力信号による制御(EXTERNAL CONTROL)では、あらかじめ他の方法(PANEL CONTROL / RS-485 CONTROL)で出力条件を設定した上で、条件の選択やレーザ光の 出力、緊急停止などの制御を行います。

* PLC: Programmable Logic Controller あらかじめプログラムした制御内容を逐次実行することに よりシーケンス制御を行う装置。シーケンサ(三菱電機の商品名)の名称で呼ばれることが多い。

2. 操作の準備

外部入出力信号によるレーザ溶接(EXTERNAL CONTROL)に必要な機器やコネクタについて説明します。

装置前面内部にある EXT.I/O(1)(2) および EMERGENCY STOP コネクタと PLC などを接 続することにより、外部からプログラムを実行して本装置を制御します。EMERGENCY STOP は、製造ラインにある他の装置でエラーが発生したときなど、PLC から非常停止の 信号を受けたときに、本装置の電源を遮断する役割を担っています。

もう1つの危険防止措置として、リモートインタロックの接続が義務づけられています。 REMOTE INTERLOCK コネクタを、レーザ溶接を行うチャンバや部屋のドアなどのイン タロックに接続しておき、不意にドアが開けられたときに、分岐シャッタが閉じてレー ザ光を遮断するようにします。

コネクタのプラグおよびケースの型式は以下のとおりです。

コネクタ	プラグ型式	ケース型式	メーカ名
EXT.I/O(1)	HDCB-37P(05)	HDC-CTH(10)	
EXT.I/O(2)	HDBB-25P(05)	HDB-CTH(10)	ヒロセ電機株式会社
EMERGENCY STOP	HDEB-9P(05)	HDE-CTH(10)	
REMOTE INTERLOCK	116-12A10-2AF10	0.5	多治見無線電機株式会社

⇒ 装置を制御するプログラムおよび開発環境は、お客様側でご用意ください。

⇒ プラグおよびケースの型式は、予告なく変更する場合があります。変更される部品によっては、取付ネジの形状が変わり、必要な工具が異なることがあります。最新の部品情報については、お近くの営業所にお問い合わせください。

3. コネクタの機能

ピンの配置と機能

外部入出力による制御を行うときに接続するコネクタは4つあります。ここでは、それ ぞれのピンの配置と機能を説明します。

EXT.I/O(1) コネクタ (D-Sub 37pin)

EXT.I/O(1) コネクタは、溶接条件の入力、ガイド光やレーザ光のスタート信号などを入 出力します。

プラグ型式	ケース型式	メーカ名
HDCB-37P(05)	HDC-CTH(10)	ヒロセ電機株式会社

⇒ 付属のコネクタの中から以下の製品を使用してください。

	\frown		
準備完了 (out)	1		
高電圧入 (out)	2	20	(IN) レーサスタート
異常 (out)	3	21	(in) レーザストップ
終了 (out)	4	22	(in) ガイド光
モニタ正常 (out)	5	23	(in) 制御切替
モニタ異堂 (out)	6	24	
	7	25	(in) ビーム選択 1
タッン カのけ可能 (out)	, o	26	(in) ビーム選択 2
		27	(in) ビーム選択 3
ノノノ投入上限 (Oul)	9	28	
		29	(in) 条件 1
		30	(in) 条件 2
出力COM	12	31	 (in) 条件 4
出力 COM	13	32	 (in) 条件 8
0V 出力	14	33	(in) 条件 16
+24V 出力	15	34	えカСОМ
外部信号電源入力	16	35	λ τh COM
外部信号コモン入力	17	36	2 7 COM
HV-ON/OFF(in)	18	27	
トラブルリセット (in)	19	57	
		\nearrow	1

操 作 編

設置・準備編

EXT.I/O(1) コネクタの入力用ピン

⇒ 16番と17番ピンに電源を供給し、23番ピンとCOM間を閉路してください。

ピン番号	説 明
14	0V 出力 外部入力信号用電源で、ML-2050A/2051A/2150A 専用です。 他の目的では使用しないでください。
15	+24V 出力 外部入力信号用電源で、ML-2050A/2051A/2150A 専用です。 他の目的では使用しないでください。
16	外部信号電源入力 外部信号電源入力端子です。入力信号回路に合わせて 14 番ピン、または 15 番ピンを 接続します。
17	外部信号コモン入力 外部信号コモン入力端子です。入力信号回路に合わせて 15 番ピン、または 14 番ピン を接続します。
18	HV-ON/OFF COM 間を閉路すると高電圧が入り、開路すると高電圧が切れます。 内部回路の保護のため、高電圧が切れてから2秒以上経過しないと、再度高電圧は入 りません。
19	トラブルリセット 異常発生後、異常原因を取り除いてから COM 間を閉路すると、異常信号の出力が解除 されます。
20	レーザスタート 21 番ピンが COM 間と閉路されている状態で、このピンと COM 間を閉路すると、レー ザ光が出力されます。閉路時間は、ディップスイッチで設定した時間以上にしてくだ さい。また、繰り返し入力するときは、開路時間を 40ms 以上にし、最大定格出力以 内の繰り返し間隔で使用してください。
21	レーザストップ 20番ピンでレーザ光を出力する場合は、このピンと COM 間を閉路します。 SCHEDULE 画面の「REPEAT」で出力回数を設定した繰り返し出力の場合、レーザ出力 中に COM 間を開路すると、レーザ出力が止まります。開路時間は 1ms 以上にしてく ださい。
22	ガイド光 COM 間を閉路している間、ガイド光を出力します。
23	制御切替 COM 間を閉路している間、外部入力信号が有効になります。
24	未使用 何も接続しないでください。
25	ビーム選択1 COM 間を閉路すると、入射ユニット1が選択され、入射ユニット1からのレーザ光の 出力が可能になります。
26	ビーム選択2 COM 間を閉路すると、入射ユニット2が選択され、入射ユニット2からのレーザ光の 出力が可能になります。

3. コネクタの機能

ピン番号		説 明				
27	ビーム選択: COM 間を閉 出力が可能は	3 路すると、入射ユニット3が選択され、入射ユニット3からのレーザ光の こなります。				
28	未使用 何も接続した	ないでください。 				
29	条件 1					
30	条件 2	 条件信号1・2・4・8・16の入力の組み合わせで、登録されてい				
31	条件 4	SCHEDULE 番号を選択します。SCHEDULE 番号の選択方法は、下表を参				
32	条件 8	照してください。				
33	条件 16					

SCHEDULE 番号の選択

29~33番ピン(条件信号 1・2・4・8・16)の入力の組み合わせで「SCH.#」を設定します。

SCH.#	信号	条件 16	条件 8	条件 4	条件 2	条件1	
00							
01							
02							● : ピンと COM 間が閉路状態
03							空白:ピンと COM 間が開路状態
04							
05							
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							

根

EXT.I/O(1) コネクタの出力用ピン

ピン番号	
1	準備完了 高電圧が入り、コンデンサに充電が完了すると、閉路します。
2	高電圧入 高電圧が入っている間、閉路します。
3	異常 異常が発生すると、トラブルリセットされるまで開路出力します。
4	終了 フラッシュランプ点灯後 50ms 間閉路します。
5	モニタ正常 レーザエネルギーのモニタ値が、POWER MONITOR 画面で設定した「HIGH」「LOW」 の値の範囲内にあるとき、50ms 間閉路します。
6	モニタ異常 レーザエネルギーのモニタ値が、POWER MONITOR 画面で設定した「HIGH」「LOW」 の値の範囲から外れたとき、50ms 間閉路します。
7	未使用 何も接続しないでください。
8	外部入力受付可能 外部入力信号を受付可能な状態(23番ピンと COM 間が閉路のとき)になると、閉路 します。開路の状態では、外部入力信号が入力されても受け付けられません。
9	ランプ投入上限 ランプ投入電力が、「REFERENCE SET」で設定した値を超えた場合、開路します。
10	未使用 何も接続しないでください。
11	未使用 何も接続しないでください。

出力形式:フォト MOS リレー出力

出力定格:DC24V 20mA max.

EXT.I/O(2) コネクタ(D-Sub 25pin)

EXT.I/O(2) コネクタは、時間分岐ユニットや分岐シャッタの制御信号を入出力します。

⇒ 付属のコネクタの中から以下の製品を使用してください。

	プラグ型式		ケース型式			メーカ名
	HDBB-25P(05)	HD	B-CT	H(10)		ヒロセ電機株式会社
時 時	分岐シャッタ 1 開放 (ou 分岐シャッタ 2 開放 (ou 分岐シャッタ 3 開放 (ou 間分岐ユニット 1 ON(ou 間分岐ユニット 2 ON(ou	t) t) t)	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20 21 22 23 24 25	(in) (in)	時間分岐ユニット1 時間分岐ユニット2

EXT.I/O(2) コネクタの入力用ピン

ピン番号	
15	未使用 何も接続しないでください。
16	未使用 何も接続しないでください。
17	時間分岐ユニット1(オプション)で分岐シャッタを独立制御する場合のみ有効。 COM 間を閉路すると時間分岐ユニット1が動いて、入射ユニット1からのレーザ光の 出力が可能になります。
18	時間分岐ユニット2(オプション)で分岐シャッタを独立制御する場合のみ有効。 COM 間を閉路すると時間分岐ユニット2が動いて、入射ユニット2からのレーザ光の 出力が可能になります。
19	未使用 何も接続しないでください。
20	未使用 何も接続しないでください。
21	未使用 何も接続しないでください。
22	未使用 何も接続しないでください。

ピン番号	説 明
22	未使用
23	何も接続しないでください。
24	未使用
24	何も接続しないでください。
25	未使用
	何も接続しないでください。

EXT.I/O(2) コネクタの出力用ピン

ピン番号	説 明
1	未使用
1	何も接続しないでください。
2	分岐シャッタ 1 開放
2	分岐シャッタ 1 が開いているとき、閉路します。
2	分岐シャッタ 2 開放
5	分岐シャッタ2が開いているとき、閉路します。
4	分岐シャッタ3開放
4	分岐シャッタ3が開いているとき、閉路します。
5	未使用
5	何も接続しないでください。
6	未使用
0	何も接続しないでください。
7	未使用
1	何も接続しないでください。
8	時間分岐ユニット1ON
0	時間分岐ユニット1が動作しているとき、閉路します。
q	時間分岐ユニット2ON
9	時間分岐ユニット2が動作しているとき、閉路します。

EMERGENCY STOP コネクタ(D-Sub 9pin)

EMERGENCY STOP コネクタは、装置の非常停止信号を入出力します。

⇒ 付属のコネクタの中から以下の製品を使用してください。

プラグ型式	ケース型式	メーカ名
HDEB-9P(05)	HDE-CTH(10)	ヒロセ電機株式会社

ピン番号	説明
1	非常停止すると、1番ピンと6番ピンが開路します。
2	2番ピンと7番ピン間を開路すると、装置の電源が遮断されます。
6	非常停止すると、1番ピンと6番ピンが開路します。
7	2番ピンと7番ピン間を開路すると、装置の電源が遮断されます。

⇒ 2番ピン(非常停止入力)と7番ピン(非常停止入力)間を開路すると、非常停止 状態となり、装置の電源が遮断されます。EXT.I/O(1)コネクタの23番ピン(制御切替) と COM 間が開路状態でも、この機能は有効です。

非常停止すると、1番ピン(非常停止出力)と6番ピン(非常停止出力)が開路し、下 図の非常停止出力状態になります。

EMERGENCY STOP コネクタ

REMOTE INTERLOCK コネクタ

REMOTE INTERLOCK コネクタは、非常時に分岐シャッタを閉じてレーザ光を遮断するためのインタロックを接続するコネクタです。

本製品をご使用の場合、JISC6802「レーザ製品の安全基準」により、リモートインタロックコネクタの装着が義務づけられています。

→ 付属のコネクタの中から以下の製品を使用してください。

プラグ型式	ケース型式	メーカ名
116-12A10-2AF10.5		多治見無線電機株式会社

ピン番号	説明
1	1 乗じいとり乗じい朋友明晩すても「公姑シャックが明います
2	1 番ビノとと番ビノ间を開始すると、力岐シャッグが困じます。

⇒ 外部インタロックの操作により、このコネクタの2ピン間を開路すると、分岐シャッ タが閉じて、ガイド光およびレーザ出力が停止されます。このコネクタは、主イン タロック、チャンバインタロック、ドアインタロック、またはその他のインタロッ クに接続してください。また、これらのインタロックは、必要に応じて複数を直列 に接続してお使いください。出荷時は、短絡用のコネクタが取り付けられています。

外部入力信号の接続例

EXT.I/O コネクタの外部入力信号の接続例を説明します。

外部入力信号が接点入力の場合

外部入力信号がマイナス COM 入力の場合

外部入力信号がプラス COM 入力の場合

外部電源供給入力の場合

外部出力信号の接続例

EXT.I/O コネクタの外部出力信号の接続例を説明します。

出力形式:フォト MOS リレー出力 出力定格:DC24V 20mA max. ※入力電源の極性は、+・-どちらでもかまいません。 設置・準備編

操作編

4. プログラミング

外部入出力信号によるレーザ溶接(EXTERNAL CONTROL)のプログラミングをするときの留意事項を説明します。

付録のタイムチャートには、装置を正しく動作させるために必要な入力信号の長さや入 力待ちの時間が示されています。このタイムチャートを参考にして、実際のプログラミ ングを行ってください。

ここでは、はじめに「条件 1」、次に「条件 2」を指定して、BEAM1 と BEAM2 から同時 2 分岐でレーザ光を単発出力する場合を例に、制御の流れを説明します。

| 🕈 制御方法を切り替える

(1) EXT.I/O(1) コネクタの 23 番ピン(制御切替)を閉路します。

EXT.I/O(1) コネクタの8番ピンが閉路し、装置から信号(外部入力受付可能)が返されます。

⇒ 操作パネルの MENU キーを押して STATUS 画面を表示すると、制御方法が 「EXTERNAL CONTROL」になっていることが確認できます。

制御切替入力	DN	
外部入力受付出力	DN	

🔶 高電圧を入れる

(1) EXT.I/O(1) コネクタの 18 番ピンと COM 間を閉路し、高電圧を入れます。
 最大 48 秒でコンデンサの充電が完了します。充電が完了すると、EXT.I/O(1) コネクタの1番ピンが閉路し、装置から信号(準備完了)が返されます。

HV-ON OFF入力	ON OFF
	充電完了 ←→ → ●
準備完了出力	最大48 s

🎈 ビーム選択(分岐シャッタの設定)をする

 (1) ビームに対応するピンと COM 間を閉路します。ここでは、ビーム1と2を選 択するために、EXT.I/O(1) コネクタの25番ピンと26番ピンを閉路します。
 分岐シャッタが開き、対応するSHUTTER ランプが点灯します。

▶ レーザ光を出力する

(1) EXT.I/O(1) コネクタの 20 番ピン(レーザスタート)を閉路します。 ビーム 1 とビーム 2 から同時にレーザ光が出力されます。

EXT.I/O(1) コネクタの4番ピン(終了出力)が50ms 間閉路し、装置から信号が返され ます。EXT.I/O(1) コネクタの5番ピン(モニタ正常出力)または6番ピン(モニタ異常 出力)が50ms 間閉路し、装置から信号が返されます。

⇒ レーザスタート受付時間(信号が入力されてから実際にレーザ光が出力されるまでの時間)は、出荷時 16ms に設定されています。レーザスタート受付時間は CPU 基

概要編

第 4 章

外部入出力信号によるレーザ溶接(EXTERNAL CONTROL

板のディップスイッチの設定により、1.0ms・4.0ms・8.0ms・16.0msの4通りか ら選択できます。詳細は、第2章「3.レーザスタート信号・条件信号受付時間の変更」 P.83 を参照してください。

⇒ レーザスタートは必ずディップスイッチで設定した時間以上閉路してください。

🌻 出力条件(SCH.#02)を設定する

(1) EXT.I/O(1) コネクタの 29 ~ 33 番ピンを組み合わせて、SCHEDULE 番号を設定します。ここでは、SCH.#01 を OFF にするため EXT.I/O(1) コネクタの 29 番ピンを開路し、SCH.#02 を ON にするため 30 番ピンを閉路します。
 ⇒ 「SCHEDULE 番号の選択」P.101 を参照してください。

条件1入力	ON OFF		
条件2入力	ON OFF	 	<→ ディップスイッチで 設定した時間以上
			\downarrow

レーザ光を出力する

(1) EXT.I/O(1) コネクタの 20 番ピン(レーザスタート)を閉路します。
 BEAM 1 と BEAM 2 から同時にレーザ光が出力されます。
 → 詳細は手順 5 と同様です。

レーザスタート入力	ON OFF	◆ ディップスイッチで 設定した時間以上 	
(レーザ光)	ON OFF	⊔л 	<u>↓ 50ms</u>
終了出力	ON OFF	·	<u> </u>
モニタ正常/異常出力	ON OFF		

🝳 🎈 作業を終了する

(1) EXT.I/O(1) コネクタの 18 番ピンと COM 間を開路し、高電圧を切ります。

(2) EXT.I/O(1) コネクタの 23 番ピン(制御切替)を開路し、外部入力信号を無効に します。

ガイド光による位置調整をするとき

溶接の前にガイド光による位置調整を行うときは、以下の手順で行います。 (1) ワーク(加工物)と出射ユニットの位置を調整し、ワークディスタンス(ワー クと出射位置の距離)を適切にしておきます。

(2) EXT.I/O(1) コネクタの 22 番ピンと COM 間を閉路します。 ガイド光が赤い点となって見えます。この赤い点の位置にレーザ光が照射されます。

(3) レーザ光の照射位置を確認します。

溶接したい点とガイド光の赤い点がずれている場合は、出射ユニットまたはワークを動 かして位置を調整します。

概要編

設置・準備炉

操作編

1. 操作の流れ

外部通信制御によるレーザ溶接(RS-485 CONTROL)の操作の流れを説明します。

レーザ溶接の操作は、操作パネルから制御する方法(PANEL CONTROL)、コネクタに接 続した PLC* などから外部入出力信号によって制御する方法(EXTERNAL CONTROL)、 接続したパソコンなどから外部通信で制御する方法(RS-485 CONTROL)があります。 外部通信による制御(RS-485 CONTROL)では、お客様が独自に開発したプログラムを パソコンなどで実行して、レーザ出力条件を設定したり、モニタデータや各種ステータ スを読み出したりします。

* PLC: Programmable Logic Controller あらかじめプログラムした制御内容を逐次実行することに よりシーケンス制御を行う装置。シーケンサ(三菱電機の商品名)の名称で呼ばれることが多い。

2. 操作の準備

1 台のパソコンなどから最大 16 台の装置を制御できます。機器構成とコネクタの接続方法は下図のとおりです。

- ⇒ 1台のパソコンなどで複数の装置を制御するときには、装置ごとに装置 No. (NETWORK #)の登録が必要です。装置 No. は重複しないように設定します。装置 No. が重複すると、通信回線にデータの衝突が生じ、正しく動作しません。
- ➡ RS-232C/RS-485 変換アダプタは別売のオプション品です。必要に応じてお買い求めください。詳細は、概要編第1章「オプション品」P.22 を参照してください。
- ⇒ 装置を制御するプログラムおよび開発環境は、お客様側でご用意ください。
- ⇒ レーザ装置内部の FG (フレームグラウンド)は、シールドケーブルを使用した場合のみ、シールド部を接続してください。SG (シグナルグラウンド)としては使用しないでください。

3. 初期設定

外部通信でレーザ溶接を制御する(RS-485 CONTROL)ための初期設定を行います。装置の操作パネルで、通信条件と装置 No.の設定を行います。

データ転送の通信条件は以下のとおりです。

データ転送方式	RS-485 準拠、非同期式、全二重									
転送速度	9600, 19200, 38400bps									
データ形式	スタートビット	1								
	データビット	8 または 7								
	ストップビット	2 または 1								
	パリティビット	偶数/奇数/なし								
キャラクターコード	ASCII	·								

➡ 転送速度とデータ形式、および装置 No. の設定は、パソコンなどに接続する各装置の操作パネルで INITIAL 画面を表示して設定します。

通信条件を設定する

装置の操作パネルで INITIAL 画面を表示して、通信条件を設定します。

INITIAL 画面を表示する

 CONTROL キースイッチを OFF にして、MENU キーを押したまま MAIN POWER スイッチを ON にします。

⇒ MENU キーは、SELF-CHECK > 画面が表示されるまで押しています。

電源が入って POWER ランプが点灯し、SELF-CHECK > 画面が表示されます。

WATER 28°C

AUTO-START

SELF-CHECK >

セルフチェックが終わると INITIAL 画面が表示されます。

INITIALIZE:0	FF	WAT	er 28°C
TEMP CONT 30	°C ALARM	L20°C	H40°C
POSITION AUT	O OFF 60min	a (2, 1	2245670
SWI-12345678	SW2-12345678	SW3-1	.2345678
ON	ON	ON	
OFF	OFF	OFF	

➡ CONTROL キースイッチが OFF になっていないと、INITIAL 画面は表示されません。各項目についての詳細は、第2章「1. 溶接条件の設定」P.58 を参照してください。

● 通信条件を指定する

(1)「SW2」の1~6のON/OFF により、通信条件を設定します。いずれか変更した いスイッチにカーソルを移動し、ON キーまたは OFF キーを押して設定します。

データビットの長さ(OFF:8bit ON:7bit)
 パリティの有無(OFF:あり ON:なし)
 パリティモード(OFF:偶数 ON:奇数)
 ストップビット(OFF:2 ON:1)
 5/6:通信速度(ON/OFFの組み合わせにより下表のとおり)

SW2-5	SW2-6	bps
OFF	OFF	9600
OFF	ON	19200
ON	OFF	38400
ON	ON	(9600)

7/8:使用しない

ここでは以下の例を設定します。

スイッチ番号	設定	設定例
1(データビット)	ON	7bit
2(パリティの有無)	ON	なし
3(パリティモード)	OFF	偶数
4(ストップビット)	ON	1bit
5/6(通信速度)	5:ON 6:OFF	38400bps

3

設定を確定する

ENTER キーを押して、設定を確定します。
 INITIAL 画面の SW2 により通信条件が設定されます。

INITIALIZE:0	FF	WATER 28°C
NEIWORK #UU		
POSITION AUT	O OFF 60min	
SW1-12345678	SW2-12345678	SW3-12345678
ON	ON 📕 📕	ON
OFF	OFF 📘 💵	OFF

〈注意〉

SW2 のスイッチの設定を変更したときは、レーザ出力を行う前にいったん電源を切り、 再度、電源を入れてください。

装置 No. を設定する

装置の操作パネルで INITIAL 画面を表示して、装置 No. (NETWORK #)を設定します。

⇒ 1台のパソコンなどで複数の装置を制御するときには、装置ごとに装置 No. (NETWORK #)の登録が必要です。装置 No. は重複しないように設定します。装置 No. が重複すると、通信回線にデータの衝突が生じ、正しく動作しません。

▶ INITIAL 画面を表示する

 CONTROL キースイッチを OFF にして、MENU キーを押したまま MAIN POWER スイッチを ON にします。

⇒ MENU キーは、SELF-CHECK > 画面が表示されるまで押しています。

電源が入って POWER ランプが点灯し、SELF-CHECK > 画面が表示されます。

WATER 28°C

AUTO-START

SELF-CHECK >

セルフチェックが終わると INITIAL 画面が表示されます。

```
INITIALIZE:OFF WATER 28°C
NETWORK #00
TEMP CONT 30°C ALARM L20°C H40°C
POSITION AUTO OFF 60min
SW1-12345678 SW2-12345678 SW3-12345678
ON ON ON ON
OFF CONT OFF CONTRACTOR
```

⇒ CONTROL キースイッチが OFF になっていないと、INITIAL 画面は表示されません。

🔶 装置 No. を指定する

(1)「NETWORK #」にカーソルを移動し、ON または OFF キーを押して 00 ~ 15 の
 範囲で装置 No. を設定します。

➡ INITIAL 画面の各項目についての詳細は、第2章「1. 溶接条件の設定」P.58 を参照 してください。

4. コマンド

外部通信でレーザ溶接を制御する場合のコマンドについて説明します。

コード一覧表

パソコンなどと外部通信を行う際のコードと文の構成は以下のとおりです。詳細は、「データを設定する」P.123から「トラブル時の異常 No. を読み出す」P.134 までを参照してください。

制御コード(16進コード)

ACK:06H NAK:15H STX:02H ETX:03H BCC(ブロックチェックコード)…STX を除いた ETX までの 1byte 水平偶数パリティ

コード	内容	文の構成																	
117	ゴームの乳白	PC→装置	S T X	C H 1	C H O	W	L A 1	L A O	S H 1	S H O	D T 1	D T O	:	da	ta	E T X	B C C		
VV	アータの設定	装置→PC	C H 1	C H O	A C K	756	または			C C N H H A 1 0 K			書き込みデータが設定範囲外 のとき、または外部通信制御 でないとき						
D	データの読み	PC→装置	S T X	C H 1	C H O	R	L A 1	L A O	S H 1	S H O	D T 1	D T O	E T X	B C C					
K	出し	装置→PC	S T X		data	1	E T X	B C C	700	または			C H O	N A K	条デ囲	件 N ー タ 外の	lo. ま × Nc とき	また). が	は 範
WS	制御方法・ SCHEDULE 番号・	PC →装置	S T X	C H 1	C H O	W	S	S H 1	S H O	c n t	s 1	s 2	s 3		s 9	m o n	E T X	B C C	
W 3	分岐シャッタ などの設定	装置→PC	C H 1	C H O	A C K	お	たし	は	C H 1	C C N A H H A L O K たは外部通信制御					きない 削御	いと でな	き、いと	まき	
WINA	[時間分岐ユ ニットの設定	PC →装置	S T X	C H 1	C H O	W	М	m 1	m 2	m 3	m 4	m 5	E T X	B C C					
VV IVI		装置→PC	C H 1	C H O	A C K	または			C C N H H A 1 0 K			指 た	定状 は外	態に 部通	でき	きない 別御 ¹	いと でな	き、 いと	まき
DS	制御方法・ SCHEDULE 番号・	PC →装置	S T X	C H 1	C H O	R	S	E T X	B C C										
КЗ	分岐シャッタ などの読み出し	装置→PC	S T X	S H 1	S H O	c n t	s 1	s 2	s 3	s 4	s 5	s 6	s 7	s 8	s 9	m o n	r d y	E T X	B C C
DM	時間分岐ユ ニットのス	PC→装置	S T X	С Н 1	C H O	R	М	E T X	B C C		~								
K IVI	テータスの読 み出し	装置→PC	S T X	S H 1	S H O	c n t	m 1	m 2	m 3	m 4	m 5	E T X	B C C						
• •	レーザスター	PC→装置	S T X	C H 1	C H O	\$	0	E T X	B C C										
\$0	トコマンド	装置→PC	C H 1	C H O	A C K	븅	ミたり	t	C H 1	C H O	N A K	HV 達発で	/-OF して 生時い	Fのな、と	ときいと	、 き、 ま 外 言	役定 ト 部通	電圧ブ信制	にル御

第5章 外部通信制御によるレーザ溶接(RS-485 CONTROL)

コード	内容	 文の構成										
¢ 0	レーザストッ	PC →装置	S T X	C H 1	C H O	\$	9	E T X	B C C			
Φ9	プコマンド	装置→PC	C H 1	C H O	A C K	ま	または		C H 1	C H O	N A K	外部通信制御でないとき
C O	トラブルリ	PC →装置	S T X	C H 1	C H O	С	0	E T X	B C C			
CO	ゼットユマン ド	装置→PC	C H 1	C H O	A C K	#5	たし	は	C H 1	C H O	N A K	外部通信制御でないとき
C 1	SHOT COUNT	PC →装置	S T X	C H 1	C H O	С	1	E T X	B C C			
υī	リセット コマンド	装置→PC	C H 1	C H O	A C K	116	または			C H O	N A K	外部通信制御でないとき
C 2	GOOD COUNT	PC→装置	S T X	C H 1	C H O	С	2	E T X	B C C			
CΖ	リセット コマンド	装置→PC	C H 1	C H O	A C K	または C H 1			C H 1	C H O	N A K	外部通信制御でないとき
рт	トラブルの読	PC →装置	S T X	C H 1	C H O	R	Т	E T X	B C C			
K I	み出し	装置→PC	S T X	E 1	Е 0	,	E 1	Е 0	,	• •	•	$\begin{array}{c c} \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{B} \\ \mathbf{I} & \mathbf{O} & \mathbf{X} & \mathbf{C} \end{array}$

データを設定する

装置 No. と条件 No. を指定して、溶接条件を設定するコマンド(コード:W)について 説明します。

CH1 · CHO	装置 No. (CH1=10 の桁、CH0=1 の桁)
LA1 · LAO	設定値の分類 No. (LA1=10 の桁、LA0=1 の桁) 99 クーラ関係の設定値 [条件 No. (SH1, SH0) は「00」とします] 84 SCHEDULE 設定値 FIX・FLEX 共通 85 SCHEDULE 設定値 FIX 専用 86 SCHEDULE 設定値 FLEX 専用 TIME 01 ~ 10 87 SCHEDULE 設定値 FLEX 専用 TIME 11 ~ 20 88 SCHEDULE 設定値 FLEX 専用 WATT 01 ~ 10 89 SCHEDULE 設定値 FLEX 専用 WATT 11 ~ 20
SH1 • SHO	条件 No.(SH1=10 の桁、SH0=1 の桁) データ範囲は 00 ~ 31 で、変更したい条件 No. を入れます。 □□(スペース)の場合は、現在使用中の条件 No. とします。
DT1 • DTO	 データ No. (DT1=10の桁、DT0=1の桁) ・データ No. は、「設定値・モニタ値一覧」P.125 を参照してください。 ・データ No. を [99] とすると、一括書き込みとなります。 data は (データ No.1), (データ No.2), (データ No.3), …, (最終データ No.)のように、各データをカンマで区切ります。ただし、モニタ値 (WATER・SHOT COUNT・GOOD COUNT・ENERGY) は除きます。
ACK または NAK	設定データが設定範囲内のときは [ACK]、範囲外のときは [NAK] が返さ れます。外部通信制御の場合のみ有効です。他の制御方法の場合は [NAK] が返されます。

データを読み出す

装置 No. と条件 No. を指定して、溶接条件の設定値やモニタ値を読み出すコマンド(コード:R)について説明します。

CH1 · CH0	装置 No.(CH1=10 の桁、CH0=1 の桁)	
LA1 · LAO	 設定値の分類 No. (LA1=10 の桁、LA0=1 の桁) 99 クーラ関係の設定値 [条件 No. (SH1, SH0) は「00」とします] 84 SCHEDULE 設定値 FIX・FLEX 共通 85 SCHEDULE 設定値 FIX 専用 86 SCHEDULE 設定値 FLEX 専用 TIME 01 ~ 10 87 SCHEDULE 設定値 FLEX 専用 TIME 11 ~ 20 88 SCHEDULE 設定値 FLEX 専用 WATT 01 ~ 10 89 SCHEDULE 設定値 FLEX 専用 WATT 11 ~ 20 95 レーザパワーモニタ SHOT COUNT, GOOD COUNT, AVERAGE 00 レーザパワーモニタ in Energy、 in Energy、 in Energy in Energy 20 レーザパワーモニタ in Energy 	
SH1 • SHO	条件 No.(SH1=10 の桁、SH0=1 の桁) データ範囲は 00 ~ 31 で、読み出したい条件 No. を入れます。 □□(スペース)の場合は、現在使用中の条件 No. とします。	
DT1 • DTO	 データ No. (DT1=10 の桁、DT0=1 の桁) ・データ No. は、「設定値・モニタ値一覧」P.125 を参照してください。 ・データ No. を [99] とすると、一括読み出しとなります。 data は (データ No.1), (データ No.2), (データ No.3), …, (最終データ No.)のように、各データをカンマで区切ります。 	
ACK または NAK	分類 No. や条件 No. またはデータ No. が範囲外の場合は、[NAK] が返され ます。	

設定値・モニタ値一覧

- ⇒ ※の項目はモニタ値です。読み出しはできますが、設定はできません。
- ⇒ ()内の数値は単位を表します。
- ➡ 時間設定は、INITIAL 画面の SW1-7 の設定によって、単位が異なります。ON の場合は、2 刻みで設定してください。

99 クーラ関係の設定値(条件 No. (SH1, SH0)は「00」とします)

データ No.	項目	データ範囲
01 ※	冷却水温度	000 – 999 (× 1℃)
02	INITIAL 画面の TEMP CONT 制御温度	00 – 99 (× 1℃)
03	INITIAL 画面の ALARM H 冷却水高温アラーム	00 – 99 (× 1℃)
04	INITIAL 画面の ALARM L 冷却水低温アラーム	00 – 99 (× 1℃)
05 ※	冷却水抵抗值	000 – 999 (× 0.01M Ω)
03 04 05 %	INITIAL 画面の ALARM H 冷却水高温アラーム INITIAL 画面の ALARM L 冷却水低温アラーム 冷却水抵抗値	00 - 99 (× 1°C) 00 - 99 (× 1°C) 000 - 999 (× 0.01M Ω)

84 SCHEDULE 設定值 FIX, FLEX 共通

データ No.	項目	データ範囲
01	SCHEDULE 画面の FORM 波形設定方法の選択 0:FIX 1:FLEX	0 – 1
02	SCHEDULE 画面の ┢️ (グラフ表示)の 入/切 0:OFF 1:ON	0 - 1
03	SCHEDULE 画面の PEAK レーザ出力ピーク値の設定	ML-2050A : 0000 - 0400 (× 0.01kW) ML-2051A : 0000 - 0250 (× 0.01kW) ML-2150A : 0000 - 0600 (× 0.01kW)
04	SCHEDULE 画面の REPEAT 1 秒間の出力回数の設定	000 – 030
05	SCHEDULE 画面の SHOT 出力回数の設定	0000 – 9999
06	POWER MONITOR 画面の HIGH レーザエネルギー上限値設定	0000 - 9999 (× 0.1J)
07	POWER MONITOR 画面の LOW レーザエネルギー下限値設定	0000 - 9999 (× 0.1J)
08	POWER MONITOR 画面の ₩(グラフ表示) の入/切 0:OFF 1:ON	0 - 1
09	POWER MONITOR 画面の REFERENCE SET ランプ電力上限値の設定	000 - 100 (× 1%)

データ No.	項目	データ範囲
01	SCHEDULE 画面の ≯SLOPE TIME	000 - 100 (× 0.1ms /× 0.01ms)
02	SCHEDULE 画面の FLASH 1 TIME	$000 - 100 \ (\times \ 0.1 \text{ms} \ / \ \times \ 0.01 \text{ms})$
03	SCHEDULE 画面の FLASH 2 TIME	000 - 100 (× 0.1ms /× 0.01ms)
04	SCHEDULE 画面の FLASH 3 TIME	$000 - 100 \ (\times \ 0.1 \text{ms} \ / \ \times \ 0.01 \text{ms})$
05	SCHEDULE 画面の ゝSLOPE TIME	000 - 100 (× 0.1ms ∕ × 0.01ms)
06	未使用	0000に固定
07	SCHEDULE 画面の FLASH 1 WATT	0000 - 2000 (× 0.1%)
08	SCHEDULE 画面の FLASH 2 WATT	0000 - 2000 (× 0.1%)
09	SCHEDULE 画面の FLASH 3 WATT	0000 - 2000 (× 0.1%)
10	未使用	0000に固定
11 ※	SCHEDULE 画面の≃ レーザエネルギーの予測値	0000 – 9999 (× 0.1J)

85 SCHEDULE 設定值 FIX 専用

86 SCHEDULE 設定值 FLEX 専用 TIME 01 ~ 10

データ No.	項目	データ範囲
01	SCHEDULE 画面の Point 1 TIME	000 - 100 (× 0.1ms /× 0.01ms)
02	SCHEDULE 画面の Point 2 TIME	000 - 100 (× 0.1ms /× 0.01ms)
03	SCHEDULE 画面の Point 3 TIME	000 - 100 (× 0.1ms /× 0.01ms)
04	SCHEDULE 画面の Point 4 TIME	000 - 100 (× 0.1ms /× 0.01ms)
05	SCHEDULE 画面の Point 5 TIME	000 - 100 (× 0.1ms /× 0.01ms)
06	SCHEDULE 画面の Point 6 TIME	000 - 100 (× 0.1ms /× 0.01ms)
07	SCHEDULE 画面の Point 7 TIME	000 - 100 (× 0.1ms /× 0.01ms)
08	SCHEDULE 画面の Point 8 TIME	000 - 100 (× 0.1ms /× 0.01ms)
09	SCHEDULE 画面の Point 9 TIME	000 - 100 (× 0.1ms /× 0.01ms)
10	SCHEDULE 画面の Point 10 TIME	000 - 100 (× 0.1ms /× 0.01ms)
11 ※	SCHEDULE 画面の≃ レーザエネルギーの予測値	0000 – 9999 (× 0.1J)

87 SCHEDULE 設定値 FLEX 専用 TIME 11 ~ 20

E × 0.01ms)
imes 0.01ms)
\times 0.01ms)
× 0.01ms)
× 0.01ms)

データ No.	項目	データ範囲
09	SCHEDULE 画面の Point 19 TIME	000 - 100 (× 0.1ms /× 0.01ms)
10	SCHEDULE 画面の Point 20 TIME	000 - 100 (× 0.1ms /× 0.01ms)
11 *	SCHEDULE 画面の≃ レーザエネルギーの予測値	0000 – 9999 (× 0.1J)

88 SCHEDULE 設定値 FLEX 専用 WATT 01 ~ 10

データ No.	項目	データ範囲
01	SCHEDULE 画面の Point 1 WATT	0000 - 2000 (× 0.1%)
02	SCHEDULE 画面の Point 2 WATT	0000 - 2000 (× 0.1%)
03	SCHEDULE 画面の Point 3 WATT	0000 - 2000 (× 0.1%)
04	SCHEDULE 画面の Point 4 WATT	0000 - 2000 (× 0.1%)
05	SCHEDULE 画面の Point 5 WATT	0000 - 2000 (× 0.1%)
06	SCHEDULE 画面の Point 6 WATT	0000 - 2000 (× 0.1%)
07	SCHEDULE 画面の Point 7 WATT	0000 - 2000 (× 0.1%)
08	SCHEDULE 画面の Point 8 WATT	0000 - 2000 (× 0.1%)
09	SCHEDULE 画面の Point 9 WATT	0000 - 2000 (× 0.1%)
10	SCHEDULE 画面の Point 10 WATT	0000 - 2000 (× 0.1%)
11 ※	SCHEDULE 画面の≃ レーザエネルギーの予測値	0000 - 9999 (× 0.1J)

89 SCHEDULE 設定值 FLEX 専用 WATT 11 ~ 20

データ No.	項目	データ範囲
01	SCHEDULE 画面の Point 11 WATT	0000 - 2000 (× 0.1%)
02	SCHEDULE 画面の Point 12 WATT	0000 - 2000 (× 0.1%)
03	SCHEDULE 画面の Point 13 WATT	0000 - 2000 (× 0.1%)
04	SCHEDULE 画面の Point 14 WATT	0000 - 2000 (× 0.1%)
05	SCHEDULE 画面の Point 15 WATT	0000 - 2000 (× 0.1%)
06	SCHEDULE 画面の Point 16 WATT	0000 - 2000 (× 0.1%)
07	SCHEDULE 画面の Point 17 WATT	0000 - 2000 (× 0.1%)
08	SCHEDULE 画面の Point 18 WATT	0000 - 2000 (× 0.1%)
09	SCHEDULE 画面の Point 19 WATT	0000 - 2000 (× 0.1%)
10	SCHEDULE 画面の Point 20 WATT	0000 - 2000 (× 0.1%)
11 *	SCHEDULE 画面の≃ レーザエネルギーの予測値	0000 – 9999 (× 0.1J)

⇒ 86、87、88、89のデータ No.11 は、すべて同じ値です。

データ No.	項目	データ範囲
01 ※	POWER MONITOR 画面の SHOT COUNT 現在までの総出力回数	00000000 - 999999999
02 ※	POWER MONITOR 画面の GOOD COUNT 適正エネルギーでの出力回数	00000000 - 999999999
03 ※	POWER MONITOR 画面の AVERAGE レーザ光の平均パワー	0000 – 9999 (× 0.1W)

95 レーザパワーモニタ SHOT COUNT, GOOD COUNT, AVERAGE

00 レーザパワーモニタ ENERGY、波形データ数など

データ No.	項目	データ範囲
01 ※	レーザパワーモニタデータの条件 No.	00 - 31
02 ※	POWER MONITOR 画面の LAMP INPUT PWR ランプ電力	000 – 999 (× 1%)
03 ※	POWER MONITOR 画面の ENERGY レーザエネルギー	0000 - 9999 (× 0.1J)
04 ※	レーザパワーモニタの波形データの数 分類 No.00 ~ 22 で送られてくるデータの数	000 - 108
05 ※	レーザ出力時のパルス幅	000 - 100 (× 0.1ms)

01 レーザパワーモニタ 波形データ 000 ~ 004

:

:

22 レーザパワーモニタ 波形データ 105 ~ 109

データ No.	項目	データ範囲
01 ※	レーザパワーモニタの条件 No.	00 - 31
02 ※	レーザパワーモニタの波形データ 1/5	0000 - 9999 (× 0.1kW)
03 ※	レーザパワーモニタの波形データ 2/5	0000 – 9999 (× 0.1kW)
04 ※	レーザパワーモニタの波形データ 3/5	0000 - 9999 (× 0.1kW)
05 ※	レーザパワーモニタの波形データ 4/5	0000 - 9999 (× 0.1kW)
06 ※	レーザパワーモニタの波形データ 5/5	0000 - 9999 (× 0.1kW)

- → パルス幅が長くなった場合は、測定間隔を広くして全部の波形データの数が 108 以内に収まるようになっています。
 - (例) * パルス幅が 00.5 ~ 05.0ms の場合、0.05ms ごとの測定値が送られます。
 * パルス幅が 05.1 ~ 10.0ms の場合、0.10ms ごとの測定値が送られます。
- → 1回に送られるデータの数は5つに限られるため、「R00 nn 04」で送られた「レー ザパワーモニタの波形データの数」に応じた回数だけ分類 No. を変えて、繰り返し 読み込みが必要です。

制御方法・SCHEDULE 番号・分岐シャッタなどを設定する

装置 No.を指定して、制御方法・SCHEDULE 番号・分岐シャッタ・高電圧の ON/OFF、 ガイド光の ON/OFF、レーザパワー値の自動送信の ON/OFF などを設定するコマンド(コー ド:WS) について説明します。

パソコンなど

装置

СН1 • СНО	装置 No.(CH1=10 の桁	б、СНО=1 Ø	0桁)	
SH1 • SHO	条件 No. (SH1=10 の桁、SH0=1 の桁) データ範囲は 00 ~ 31 で、変更したい条件 No. を入れます。 □□ (スペース)の場合は、現在使用中の条件 No. とします。			
cnt	 制御方法 0:操作パネルによる 1:外部入出力信号に 2:外部通信制御による 3:メンテナンスモー 4:(欠番) 5:外部入出力信号に *パソコンなどから設定 ペース)を設定してる る制御」や「メンテナンスモード あり、通常、お客様に ときは、制御方法の変 * CONTROL キースイム 制御方法を変更する 外部入出力信号による 外部入出力信号による から「0」「2」を設定し りません。 	 制御 制御 4 4<td>出力条件は操作パネルで設定) 出力条件はパソコンなどで設定) 値は「0」と「2」です。その他の値や□(ス 法は変更されません。「外部入出力信号によ 」に設定することはできません。 エンジニアが保守の際に使用するモードで ことはありません。メンテナンスモードの きません。 たん OFF にすると、「0:操作パネルによる 言号による制御が OFF の場合)。 個目はすべて空欄にしてください。 RNAL CONTROL)が ON のとき 創御方法より優先されます。パソコンなど 下表のようになります。設定に順番はあ</td>	出力条件は操作パネルで設定) 出力条件はパソコンなどで設定) 値は「0」と「2」です。その他の値や□(ス 法は変更されません。「外部入出力信号によ 」に設定することはできません。 エンジニアが保守の際に使用するモードで ことはありません。メンテナンスモードの きません。 たん OFF にすると、「0:操作パネルによる 言号による制御が OFF の場合)。 個目はすべて空欄にしてください。 RNAL CONTROL)が ON のとき 創御方法より優先されます。パソコンなど 下表のようになります。設定に順番はあ	
		設定値	設定される制御方法	
	OEE のとキ	0	0:操作パネルによる制御	
	UFF 0/2 2	2	2:外部通信制御による制御	
	ONOLE	0	1:外部入出力信号による制御 (出力条件は操作パネルで設定)	
	00025	2	5:外部入出力信号による制御 (出力条件はパソコンなどで設定)	

設置・準備編

操作編

	 ※「1:外部入出力信号による制御(出力条件は操作パネルで設定)」の状態で、 外部入出力制御がOFFになると、「0:操作パネルによる制御」に変わります。 ※「5:外部入出力信号による制御(出力条件はパソコンなどで設定)」の状態で、外部入出力制御がOFFになると、「2:外部通信制御による制御」に 変わります。
s1	HV(高電圧)(0:OFF 1:ON □:現状維持)
s2	LD (ガイド光) (0:OFF 1:ON □:現状維持)
s3	未使用(□に固定)
s4	分岐シャッタ1(0:OFF 1:ON □:現状維持)
s5	分岐シャッタ2(0:OFF 1:ON □:現状維持)
s6	分岐シャッタ3(0:OFF 1:ON □:現状維持)
s7	未使用(□に固定)
s8	未使用(□に固定)
s9	未使用(□に固定)
mon	レーザパワーモニタ値の自動送信(0:OFF 1:ON □:現状維持) フラッシュランプが点灯するごとに、「00 レーザパワーモニタ ENERGY、 波形データ数など」(P.128)が送られます。高速繰り返し出力の場合は通信 が間に合わないため、一定間隔ごとのデータが送信されます。 「cnt」で制御方法を変更しても、電源を OFF にしない限り、データは自動送 信されます。
ACK または NAK	外部通信制御の場合のみ有効です。変更できない設定が1つでもあった場合、 すべて無効になり [NAK] が返されます。

時間分岐ユニットのミラーを設定する

時間分岐ユニットのミラーを設定するコマンド(コード:WM)について説明します。

パソコンなど

СН1 • СНО	装置 No. (CH1=10 の桁、CH0=1 の桁)
m1	時間分岐ユニット1(0:OFF 1:ON □:現状維持)
m2	時間分岐ユニット2(0:OFF 1:ON □:現状維持)
m3	未使用(□に固定)
m4	未使用(□に固定)
m5	未使用(□に固定)

ACK または NAK

外部通信制御の場合のみ有効です。変更できない設定が1つでもあった場合、 すべて無効になり [NAK] が返されます。

> s s m 0 8 9 n

E B T C X C

r d y

制御方法・SCHEDULE 番号・分岐シャッタなどを読み出す

装置 No.を指定して、制御方法・SCHEDULE 番号・分岐シャッタ・高電圧の ON/OFF、 ガイド光の ON/OFF、レーザパワー値の自動送信の ON/OFF などを読み出すコマンド(コー ド:RS) について説明します。

パソコンなど

СН1 • СНО	装置 No. (CH1=10 の桁、CH0=1 の桁)
SH1 • SHO	条件 No. (SH1=10 の桁、SH0=1 の桁)
cnt	 制御方法 0:操作パネルによる制御 1:外部入出力信号による制御(出力条件は操作パネルで設定) 2:外部通信制御による制御 3:メンテナンスモード 4:(欠番) 5:外部入出力信号による制御(出力条件はパソコンなどで設定)
s1	HV (0:OFF 1:ON)
s2	LD (0:OFF 1:ON)
s3	未使用(0に固定)
s4	分岐シャッタ1 (0:OFF 1:ON)
s5	分岐シャッタ2 (0:OFF 1:ON)
s6	分岐シャッタ3 (0:OFF 1:ON)
s7	未使用(0に固定)
s8	未使用(0に固定)
s9	未使用(0に固定)
mon	レーザパワーモニタ値の自動送信(0:OFF 1:ON) フラッシュランプが点灯するごとに、「00 レーザパワーモニタ ENERGY、 波形データ数など」(P.128)が送られます。
rdy	READY 状態(0:レーザスタート不可 1:レーザスタート可)

時間分岐ユニットのステータスを読み出す

時間分岐ユニットのステータスを読み出すコマンド(コード:RM)について説明します。

装置

S S S S C m m m m m m E B X 1 0 t 1 2 3 4 5 X C

СН1 • СНО	装置 No. (CH1=10 の桁、CH0=1 の桁)
SH1 • SHO	条件 No. (SH1=10 の桁、SH0=1 の桁)
cnt	 制御方法 0:操作パネルによる制御 1:外部入出力信号による制御(出力条件は操作パネルで設定) 2:外部通信制御による制御 3:メンテナンスモード 4:(欠番) 5:外部入出力信号による制御(出力条件はパソコンなどで設定)
m1	時間分岐ユニット1 (0:OFF 1:ON)
m2	時間分岐ユニット2(0:OFF 1:ON)
m3	時間分岐ユニット3 (0:OFF 1:ON)
m4	未使用(0に固定)
m5	未使用(0に固定)

レーザ光出力をスタートする

レーザ光出力をスタートするコマンド(コード:\$0)について説明します。

	レーザスタートができるときは [ACK]、できないときは [NAK] が返され ます。
ACK または NAK	レーザスタートができないときの要因としては、以下が考えられます。 ・異常発生 ・HV-OFF
	・設定電圧まで充電が完了していないとき
	・外部通信前側(RS-485 CONTROL)になっていないとさ

レーザ光出力をストップする

レーザ光出力をストップするコマンド(コード:\$9)について説明します。

パソコンなど

ACK または NAK

_			 		
S T X	C H 1	C H 0	\$ 9	E T X	B C C

装置

СН1 • СНО	装置 No.(CH1=10 の桁、CH0=1 の桁)
ACK または NAK	外部通信制御(RS-485 CONTROL)の場合のみ有効です。他の制御方法の 場合は [NAK] が返されます。

異常信号の出力を停止する

異常信号の出力を停止するコマンド(コード:C0)について説明します。

場合は [NAK] が返されます。

パソコンなど S C C T H H X 1 0 0 E B T C X C С C C A H H C 1 0 K C H O N A K C H 1 または 装置 装置 No. (CH1=10 の桁、CH0=1 の桁) CH1 • CH0 外部通信制御(RS-485 CONTROL)の場合のみ有効です。他の制御方法の 操作編

概要編

設置・準備編

総出力回数をリセットする

総出力回数(SHOT COUNT)を 0 にリセットするコマンド(コード:C1)について説明 します。

パソコンなど

適正出力回数をリセットする

場合は [NAK] が返されます。

適正出力回数(GOOD COUNT)を0にリセットするコマンド(コード:C2)について説 明します。

パソコンなど

装置

S T X C C H H 1 0 E T X B C C C 2

|--|

СН1 • СНО	装置 No.(CH1=10 の桁、CH0=1 の桁)
ACK または NAK	外部通信制御(RS-485 CONTROL)の場合のみ有効です。他の制御方法の 場合は [NAK] が返されます。

トラブル時の異常 No. を読み出す

トラブル時の異常 No. を読み出すコマンド(コード:RT)について説明します。

パソコンなど

СН1 • СНО

装置 No. (CH1=10 の桁、CH0=1 の桁)

E1 • EO	異常 No. (E1=10 の桁、E0=1 の桁) すべての異常 No. が送信されます。正常時の異常 No. は「00」となります。 異常 No. と対応する内容については、「異常内容一覧」P.135 を参照してく ださい。
---------	--

異常内容一覧

番号	内容	番号	内容
00	正常	32	光ファイバ未接続
01	側面カバー・背面カバー開	33	EMISSION ランプ異常(出射ユニット)
02	上面カバー・ランプ交換カバー開	34	EMISSION ランプ異常(操作パネル)
03	非常停止	35	電池電圧低下
04	水位不足	36	
05		37	
06		38	ファイバ1 断線
07		39	ファイバ2 断線
08	放電抵抗温度異常	40	ファイバ3断線
09		41	
10	冷却水温度過大	42	
11	冷却水温度過小	43	
12	流量不足	44	インタロック作動
13	冷却水抵抗率異常	45	充電未完了
14	予備放電異常	46	パワーモニタユニット温度異常
15	充電異常	47	使用率オーバー
16	コンデンサバンク異常	48	光ファイバ許容値超過
17		49	設定条件範囲外
18		50	設定条件範囲外(ランプ投入電力)
19	分岐シャッタ1異常	51	光ファイバ許容値超過
20	分岐シャッタ2異常	52	メモリ異常
21	分岐シャッタ3異常	53	パワーフィードバックシステム異常
22		54	冷却水絶縁度注意
23		55	
24		56	レーザパワー上限異常
25		57	レーザパワー下限異常
26		58	
27		59	時間分岐ユニット1異常
28		60	時間分岐ユニット2異常
29	放電ユニット温度異常	61	
30	放電ユニット過電力異常	62	
31	分岐部カバー開	63	

概要編

設置・準備編

操作編

三栄電機(株)のプリンタ BL2-58SNWJC(オプション)を RS-485 ケーブルで装置に接続し、 各 SCHEDULE の出力条件および POWER MONITOR 画面の測定値を印刷します。

1. 設定値の印刷

⇒ 電源 OFF の場合は、MAIN POWER スイッチを ON にし、CONTROL キースイッチ を ON にします。操作パネルに SCHEDULE 画面、STATUS 画面、POWER MONITOR 画面のいずれかの画面が表示されている状態で、以下の操作を行います。

🎈 PRINTOUT MODE 画面を表示する

(1) TROUBLE RESET キーと CURSOR キー (▽) を同時に押します。
 PRINTOUT MODE 画面が表示されます。

-PRINTOUT	MODE	WATER	28°C
11(11)001	TIODE		-0 0

SCH.#00

1:SCHEDULE 2:POWER MONITOR

HV:ON POSI.BLINK:ON POSITION:OFF

🎈 SCHEDULE を指定する

(1)「SCH.#」にカーソルを移動し、ON または OFF キーを押して印刷する出力条件の SCHEDULE 番号を設定します。

(2) ENTER キーを押します。

🎈 印刷を実行する

(1)「1:SCHEDULE」にカーソルを移動し、ENTER キーを押します。指定した SCHEDULE の出力条件が印刷されます。

FORM:FIX (定型波形) の例 [SCHEDULE] -SCH. #00 [FORM:FIX] PEAK POWER = 01.00kW U-SLOPE = 01.0ms FLASH 1 = 03.0ms 040.0% FLASH 2 = 05.0ms 080.0% FLASH 3 = 02.0ms 020.0% D-SLOPE = 00.5ms REPEAT = 001pps SHOT = 0430 ESTIMATED VALUE = 5.3J

FORM:FLEX (任意波形)の例

[SCHEDULE] -SCH.#01 [FORM:FLEX]			
PEAK POWER = 04.00kW			
Point1 = 01.0ms 090.0% Point2 = 01.0ms 070.0% Point3 = 01.0ms 088.0% Point4 = 01.0ms 065.0% Point5 = 01.0ms 000.0% Point5 = 01.0ms 000.0% Point6 = 00.0ms 000.0% Point7 = 00.0ms 000.0% Point9 = 00.0ms 000.0% Point10 = 00.0ms 000.0% Point11 = 00.0ms 000.0% Point12 = 00.0ms 000.0% Point13 = 00.0ms 000.0% Point14 = 00.0ms 000.0% Point15 = 00.0ms 000.0% Point16 = 00.0ms 000.0% Point17 = 00.0ms 000.0% Point18 = 00.0ms 000.0% Point19 = 00.0ms 000.0% Point12 = 00.0ms 000.0%			
REPEAT = 001pps SHOT = 1120			
ESTIMATED VALUE = 12.5J			
100% 5ms			

2. 測定値の印刷

- ⇒ 電源 OFF の場合は、MAIN POWER スイッチを ON にし、CONTROL キースイッチ を ON にします。
- ⇒ 測定値を印刷するためには、溶接条件を設定して実際に一度レーザ光を出力します。 その際、POWER MONITOR 画面の ↓ (測定波形のグラフ表示)を ON にして測定 波形を表示させる必要があります。測定波形が表示されたことを確認したら、以下 の操作を行います。

🎈 PRINTOUT MODE 画面を表示する

(1) TROUBLE RESET キーと CURSOR キー(▽)を同時に押します。
 PRINTOUT MODE 画面が表示されます。

-PRINTOUT MODE WATER 28°C				
SCH.#00				
1:SCHEDULE				
2:POWER MONITOR				
HV:ON	POSI.BLINK:ON	POSITION:OFF		

• 印刷を実行する

(1)「2:POWER MONITOR」にカーソルを移動します。

(2) ENTER キーを押します。 直前の出力による測定値が印刷されます。

⇒ 印刷できる測定値および出力波形は、直前のレーザ出力のデータのみです。 SCHEDULE 番号を指定して、連続して他の条件での測定値を印刷することはできません。

FORM:FIX(定型波形)の例

FORM:FLEX (任意波形)の例

メンテナンス編

メンテナンスを始める前に以下の事項を読み、十分ご注意ください。

1.保守部品と点検・交換の目安

保守部品は、使用しているうちに性能が劣化し、修理や交換が必要な場合があります。 以下の表を参考にして、定期的に点検してください。

[⇒] 保守部品の型式は、予告なく変更する場合があります。最新の部品情報については、 お近くの営業所にお問い合わせください。

品名	型式	作業周期 (目安)*1	作業内容 *2
フラッシュランプ	MLD-0902	100万ショッ ト*3	交換
詰替用イオン交換樹脂	MLF-0020	6 か月	交換

設置・準備編

操作

メンテナンス編

第1章 メンテナンスのしかた

品名			型式	作業周期 (目安)*1	作業内容 *2
 イオン交換樹脂カートリッジ (詰替樹脂付き)		ジ	MLF-0024-00	3年	交換
水フィルタ			MLE 0006 00	6 か月	清掃
			MLF-0000-00	3年	交換
落とし蓋			Z-01835-001	1年	交換
冷却水(精製水、20L)			MLU-0604-00	6 か月	交換
リチウム電池 *4			CR 2450	3年	交換
		北西	ME 12, 104 V 125 V 180	毎週	清掃
		育囬	MF-13 $10t \times 135 \times 180$	1年	交換
エアフィルタ			NE 10, 15, 17, 000 X 010	毎週	清掃
		側面	MF-13 15t × 200 × 210	1年	交換
				毎日	清掃
保護刀フス			出射ユーット指定のもの	_	交換 *5
ガラス板			A4-00719	ランプ交換 2回に1回	交換
チャンバ蓋用0リング			AS568-244(1517-22)	3年	交換
ロッドホルダ用0リング			P12	5年	交換
	ML-2050A		S-6	3年	交換
ロッド用0リング	ML-2051A		S-4	3年	交換
	ML-21	50A	S-8	3年	交換
 分岐シャッタ *6			A-06090-002	500万回	交換
時間分岐ユニット *7			A-03445-001	100万回	交換
ポンプ			TEN-70PZ-H12-UA	5年	交換
冷却ファンモータ 背面 側面		背面	9G1224H102	- 4.5 年	交換
		側面	$R1225 \times 24BPLB1$		
出射ユニットレンズ				1年	清掃
			出射ユニット付属のもの	_	交換
光ファイバ				汚れた場合	清掃
			指定のもの	破損した 場合 *8	修理、交換

の部分は当社エンジニアがメンテナンス作業を行います。

*1 作業周期はメンテナンス時期および部品期待寿命であり、保証期間とは異なります。

*2 部品の交換は、破損したり欠陥があった場合、または使用可能期間が終わったときに実施します。
- *3 ランプ寿命(光量低下、ランプ割れおよび不点灯になるまで)となるフラッシュ回数は、レーザ出力条件やレーザ照射間隔により大きく異なります。フラッシュランプは、1秒間に数ショット~数十ショットの繰り返しで連続的にフラッシュする場合に比べ、単発での使用や待機時間が長い場合には、フラッシュ回数が1/10以下となることがあります。この理由は、通常パルスレーザのランプは、点灯後に低電流を流し、すぐにフラッシュ可能な待機状態にしています。しかし、この低電流が流れる待機状態が長いと、ランプ電極の先端の劣化が早まる傾向にあるためです。また、ランプを最大出力エネルギー近くの条件でフラッシュさせて使用する場合にも、ランプ電極の劣化が早まるため、フラッシュ回数が連続照射時に比べ1/10以下となることがあります。
- *4 リチウム電池は、装置を長期間(約1か月間)休止した場合は、使用可能期間が短くなります。
- *5 当社が販売する標準の保護ガラスは、平行度を規定していません。したがって、保 護ガラスを交換した場合に、平行度の個体差により交換前と交換後で集光位置がず れる場合があります。集光位置のずれが極めて小さい保護ガラスも製作可能ですの で、必要な場合にはお問い合わせください。
- *6 分岐シャッタの期待寿命は 500 万回です。レーザの ON/OFF に合わせて分岐シャッ タの ON/OFF を切り替えるような動作は作業周期の短縮につながります。装置立ち 上げ時に分岐シャッタを ON に設定し、レーザ動作時は原則として分岐シャッタを ON にすることで、より長期間ご使用いただけます。
- *7 時間分岐ユニットの期待寿命は 100 万回です。時間分岐ユニットの作業周期を超え て動作させた場合、時間分岐ユニットの停止精度の低下に伴う光軸ずれにより、光 ファイバの損傷が発生する可能性があるため、定期点検を推奨します。
- *8 光ファイバは、粉塵やオイルミストなどが端面に付着したまま使用すると、破損することがあります。

2. クーラユニット部のメンテナンス

エアフィルタ、水フィルタのクリーニング、イオン交換器のメンテナンスのしかたを説 明します。また、他のメンテナンス時に必要な冷却水タンクの水抜き、レーザチャンバ 水抜きのしかたを説明します。

エアフィルタのクリーニングをする

本体側面のエアフィルタは、クーラユニット部への空気の取入口にあります。毎週クリー ニングしてください。

準備するもの

+ドライバ

作業手順

(1) 側面のフィルタ押さえ金具を、+ドライバで取り外します。

- (2) エアフィルタを取り出し、水道水で洗います。
- ⇒ 汚れがひどい場合は中性洗剤を使用してください。

(3) 十分に自然乾燥してから、エアフィルタを元に戻し、フィルタ押さえ金具を取り付けます。

冷却水タンクの水抜きをする

詰替用イオン交換樹脂の交換、イオン交換器の交換、冷却水の交換(6か月に一度)を する場合は、冷却水タンクの水を抜き、タンクを空にしてください。また、装置を移動・ 運搬する場合や、1か月以上使用停止する場合も冷却水タンクを空にしてください。

準備するもの

給水ポンプ/バケツ

作業手順

- (1) 前扉を開きます。
- (2) 冷却水タンクの蓋を開け、中の落とし蓋を取り出します。→ 落とし蓋に汚れが付着しないように注意してください。
- (3) ポンプでタンク内の水をくみ出します。
- (4) 落とし蓋をタンク内に戻し、タンクの蓋を元どおりに取り付けます。

本体前面(前扉を開けた状態)

概要編

イオン交換樹脂詰め替え・イオン交換器の交換をする

イオン交換器に入っているイオン交換樹脂は、冷却水が劣化して発生するイオンを除去 し、純度を保つ働きをしています。6か月以内に、当社製の新しいイオン交換樹脂と詰 め替えてください。

本装置のイオン交換器はカートリッジ式を採用しており、中身(イオン交換樹脂)を詰 め替えることで、繰り返し使用できます。

イオン交換器は約3年ごとに交換してください。

⇒ 詰替用のイオン交換樹脂は、直射日光を避け、なるべく涼しい場所で保管してください。また、性能が落ちるので、凍らせないでください。

準備するもの

イオン交換器着脱工具/詰替用イオン交換樹脂(またはカートリッジ)/冷却水(6ℓ)/ +ドライバ/給水ポンプ/手袋(ビニール製)

● イオン交換器を取り外す

(1) 冷却水タンクの蓋を開け、中の落とし蓋を取り出します。

- ⇒ 落とし蓋に汚れが付着しないように注意してください。
- (2) ポンプでタンク内の水をくみ出します。
- (3) 着脱工具でイオン交換器を左に回し、ネジを緩めて取り外します。
- ⇒ 新品のイオン交換樹脂カートリッジ(詰替樹脂付き)に交換する場合は、手順3へ 進みます。

本体前面(前扉を開けた状態)

(4) イオン交換器のキャップを外して、古いイオン交換樹脂を廃棄します。

⇒ 使用済みのイオン交換樹脂は、プラスチック系のごみとして処理してください。

▶ 新しいイオン交換樹脂を入れる

(1)新しいイオン交換樹脂をイオン交換器の中に入れ、キャップを元どおりにネジ で止めます。

〈注意〉

- ・イオン交換樹脂は、空気中に放置しておくと劣化します。開封後はすぐにイオン交換 器に入れ、冷却水タンクへ戻して(浸して)ください。
- ・イオン交換樹脂は、こぼさないように注意して入れてください。イオン交換器の口に 付いたイオン交換樹脂は拭き取ります。

概要編

🔰 🎈 イオン交換器を取り付ける

(1) イオン交換器を差し込み、着脱工具で右へ回して取り付けます。 <注意〉

イオン交換器の取り付けには、着脱工具を使用してください。着脱工具を強く締めすぎ ると、ネジ部が壊れるので注意してください。

- (2) 冷却水を、付属の給水ポンプで水位ラベルの HIGH の下の線まで入れます。
- (3) 落とし蓋を元どおりタンク内水面に浮かせ、冷却水タンクの蓋を取り付けます。
- ⇒ 落とし蓋は、繰り返し使用できます。材質はポリエチレンフォームなので、廃棄す る場合は適切に処理してください。
- ⇒ 落とし蓋をタンクに入れないで使用すると、イオン交換樹脂の劣化が早まります。 必ず、タンクに入れて使用してください。

水フィルタのクリーニングをする

水フィルタは冷却水タンクの中にあり、冷却水をろ過しています。6か月を目安にクリー ニングしてください。また約3年ごとに交換してください。

準備するもの

手袋(ビニール製)/給水ポンプ/冷却水(6ℓ)/着脱工具

🚦 🌻 水フィルタを取り外す

(1) 冷却水タンクの蓋を開け、中の落とし蓋を取り出します。⇒ 落とし蓋に汚れが付着しないように注意してください。

(2) ポンプでタンク内の水をくみ出します。

(3)着脱工具でイオン交換器を左に回し、ネジ を緩めて取り外します。

(4) 水フィルタを手前に引いて外します。

り 水フィルタを洗う

(1) 水フィルタを水道水で洗い、最後にイオン 交換水または精製水ですすぎます。

(2) 水フィルタを元どおりに一番奥まで差し込 みます。

このとき0リングが外れないように注意してください。

(3) イオン交換器を差し込み、着脱工具で右に 回して取り付けます。

(4) 付属の給水ポンプで、水位ラベルの HIGH の下の線まで冷却水を入れます。

(5)落とし蓋をタンク内水面に浮かせ、冷却水 タンクの蓋を元どおりに取り付けます。

冷却水タンク(上から見た状態)

設置・準備編

概要編

レーザチャンバその他の水抜きをする

フラッシュランプを交換する場合には、レーザチャンバの水抜きをします。 装置を1か月以上使用しない場合や、設置場所の室温がやむをえず0℃以下になる場合は、 レーザチャンバの水抜きのほか、冷却水タンクとイオン交換器部分の水抜きを行い、冷 却水を完全に抜いてください。

準備するもの

手袋(ビニール製)/給水ポンプ/きれいな布

▶ レーザチャンバの水を抜く

(1) レーザチャンバの水抜き孔の止めネジを外 します。

水抜き孔から空気が入ると、チャンバ内とホース 内の水がタンクに落ちます。

(2) 水抜き孔の止めネジを、元どおりに取り付けます。

冷却水タンク・イオン交換器部分の水を抜く

- (1) 冷却水タンクの蓋を外し、中の落とし蓋を取り出します。
- (2) 付属の給水ポンプを使用し、タンク内の水をくみ出します。
- (3) イオン交換器を取り外し、たまっている水をタンク内に落とします。⇒ 外したイオン交換器は、きれいな布などの上に置くようにしてください。
- (4) 給水ポンプで、イオン交換器を取り外した配管部とタンク内の水抜きをします。
- (5) 取り外したイオン交換器を元に戻します。
- (6) 落とし蓋をタンク内に戻し、タンクの蓋を元どおりにします。
- ⇒ 水漏れによる故障・事故防止のため、取り外した水抜き孔の止めネジは、必ず元どおり取り付けてください。

3. レーザ発振部のメンテナンス

フラッシュランプを交換する

フラッシュランプはレーザチャンバの中にあり、レーザ発振時の励起に使われているラ ンプです。レーザ出力回数 100 万ショット程度を交換の目安にすることをお勧めします。

準備するもの

手袋(ビニール製)/きれいな布/アルコール/+ドライバ/ ボールドライバ 2.5mm、4mm /フラッシュランプ(新品)

レーザチャンバは上部と下部に分かれています。下部チャンバには反射板の上にガラス 板が載っています。

⇒ 取り外した反射板 (リフレクタ) その他の部品は、油やほこりなどが付かないように、 きれいな布などの上に置いてください。

〈注意〉

- ・反射板内面の鏡面に傷やほこりが付かないよう、十分注意して取り扱ってください。 傷やほこりなどはレーザ出力低下の原因となります。
- フラッシュランプのガラス部分に直接手で触れたり、傷を付けたりしないでください。
 破損の原因となります。また、取り付けるときはランプのガラス部分をアルコールで
 清掃してください。

● フラッシュランプを交換する

(1) 両側のランプ押さえを取り外します。フラッシュランプのリード線をまっすぐ に伸ばし、ランプ押さえをリード線に沿って抜き取ります。フラッシュランプの両 側のOリングも同様に抜き取ります。

(2) フラッシュランプをゆっくり片側から引き抜きます。次にリード線をまっすぐ に伸ばします。

〈注意〉

・リード線末端の端子で反射面を傷つけないよう注意してください。

・チャンバなどの金属部に当ててフラッシュランプを破損しないよう注意してください。

(3) 新しいフラッシュランプのリード線をまっすぐに伸ばし、上部チャンバに差し 込みます。

⇒ ランプの極性を正しくセットしてください。上部チャンバの+印側に、赤い印が付いたリード線の端子がくるようにします。ランプの極性を逆に付けてしまうと寿命が短くなるので、必ず極性を確認してください。

(4) フラッシュランプに付属の O リングを両側のリード線から通し、それぞれフラッシュランプにセットします。

→ 0リングに傷がないことを確認してください。傷があると水漏れの原因となりますので、新品と交換してください。

(5) 同様にして、ランプ押さえで一度 O リングを押し込んでから、ランプ押さえを 両側に取り付けます。O リングが溝に収まるよう確認しながらボルトを締めます。 概要編

レーザチャンバを取り付ける

(1) 組み上がった上部チャンバを、下部チャンバに合わせて取り付けます。上部チャンバのピン穴を下部チャンバのピンに合わせて、ボルト4本で固定します。
 ⇒ 標準 500cN・m (50kgf・cm)の締め付けトルクでボルト4本を締め付けてください。
 ⇒ 下部チャンバの反射板の上部にガラス板が載っていること、0リングに傷がないこと、メッシュと0リングがきちんと溝に収まっていることを確認します。

(2) フラッシュランプのリード線を端子台にネジ止めし、電極カバーを取り付けます。

🌔 動作確認をする

(1) 発振器カバーインタロックスイッチの先端部を引き、インタロックを解除します。

(2)上部チャンバと下部チャンバを固定しているボルト4本と、上部チャンバの水 抜き孔の止めネジが締まっていることを確認して、装置の電源を入れます。 電源を入れると警告灯が点灯し、インタロックが解除されていることを知らせます。

⇒ 動作確認時に水漏れが発生した場合は、最大 550cN・m(55kgf・cm)の締め付け トルク範囲内でボルト4本を締め付け、水漏れがないことを確認してください。

(3) CONTROL キースイッチを ON にしてクーラを作動させ、水漏れのないことを確認します。

➡ CONTROL キースイッチを ON にすると、チャンバ上蓋の O リングの溝から最初に 若干水滴がしみ出ることがありますが、異常ではありません。きれいな布などで拭 き取ってください。 (4) 装置が正常に動作することを確認して、装置の電源を切ります。

(5)発振器カバーを取り付けます。

光ファイバの入射調整をする

本装置は、高精度光ファイバを採用しているため、一度入射調整を行うと、ファイバ着 脱時の再調整は不要です。ただし、レーザ発振調整、光軸調整を行った場合や、分岐ミ ラー、入射ユニット、YAG ロッド、レーザチャンバを取り外した場合、φ 0.2mmの光ファ イバを交換した場合は、入射調整が必要です。

⇒ 入射調整の方法については、当社までお問い合わせください。

〈注意〉

ファイバ入射調整には、専用光ファイバを使用してください。ほかの光ファイバで入射 調整を行うと、ファイバの着脱時に入射光軸がずれ、そのまま使用すると端面を破損す ることがあります。

出射ユニット光学部品のクリーニングをする

出射ユニットのレンズが汚れた場合はクリーニングを行います。

準備するもの

エアブロー/ネジリングスパナ (NRS-50) * /エタノール/レンズクリーニングペーパー * ご使用の出射ユニットによっては必要ありません。

- ⇒ 光学部品のメンテナンスには、上記のメンテナンス用品や器具以外は使用しないで ください。
- ⇒ 光学部品は一般機械加工部品と異なり、傷が付いたり焼けたりすると使用できなく なります。取り扱いには十分に注意してください。
- ⇒ 入射ユニットの光学部品のメンテナンスを行う場合は、当社までご連絡ください。

ゴミ・ほこりが付着した場合

- (1) 光学部品の側面をつまみ、水平に持ちます。
- (2) エアブローで、ゴミ・ほこりを飛ばします。

くもり、その他の汚れの場合

(1) 光学部品の側面をつまみ、水平に持ちます。

(2) クリーニングペーパーの中央部にエタノールを1滴落とします。

(3) 光学部品の上に、クリーニングペーパーのエタノールを落とした部分を密着させます。

(4) クリーニングペーパーの端をつまみ、ゆっくり引っ張りながら拭き取ります。

⇒ 拭き取っている途中、クリーニングペーパーと光学部品との間に隙間ができたり、 エタノールが残っていたりすると、ムラの原因になります。

光ファイバのクリーニングをする

光ファイバが汚れていた場合は、クリーニングをしてください。

▲警告
■ 本作業は当社サービスマンからの教育を必ず受けてください。
■ 作業を始める前に、必ず装置の電源を切ってください。

準備するもの

エアブロー/レンズクリーニングペーパー/端面チェッカー

作業手順

(1) 光ファイバを、入射ユニットまたは出射ユニットから取り外します。

(2) エアブローでほこりを飛ばします。 端面のほこりが取れない場合は、クリーニングペーパーで軽く拭きます。

(3) 端面チェッカーを使用し、光ファイバ端面に傷やほこりがないことを確認します。
 ⇒ 光ファイバの端面を強くこすると傷の原因となります。ご注意ください。

4. 電源部のメンテナンス

バックアップ用リチウム電池を交換する

本体内部の CPU 基板上にあるバックアップ用リチウム電池を交換します。電池の寿命は 約3年です。3年以内に交換してください。

準備するもの

+ドライバ/リチウム電池 CR2450

➡ 電池交換時に、登録してある出力条件データが消える恐れがあります。交換前に、 付録の出力条件データ記入表にデータを控えておくことをお勧めします。

作業手順

- (1) MAIN POWER スイッチを OFF にして 5 分以上待ちます。
- (2) 背面から見て左側の側面カバーを外します。

(4) 取り外した側面カバーを取り付けます。

操作パネル制御基板の電池を交換する

操作パネルの下にある制御基板上のリチウム電池を交換します。約3年ごとに交換して ください。

準備するもの

+ドライバ/リチウム電池 CR2450

作業手順

- (1) 背面にある、ネジ①(2か所)を緩め、発振器カバーを取り外します。
- (2) ネジ②を取り外し、操作パネルを開きます。

Ö.

保護板をスイッチ側へスライドさせる

3

概要編

メンテナンス編

(5) 基板の内側に付いている電池を交換します。

(6) 制御基板を取り付けます。

制御基板のコネクタと、下の基板のコネクタを合わせて差し込みます。差し込むときに、 ピンが曲がらないようにまっすぐ差し込んでください。

右側のコネクタでは、下の基板か ら出ている2本のピンを、制御基 板側の3・4番ピンに差し込む

エアフィルタのクリーニングをする

本体背面にあるエアフィルタは、電源部の空気の取入口にあります。この部分のエアフィ ルタは、毎週クリーニングしてください。

準備するもの

+ドライバ

作業手順

本体背面にあるフィルタ押さえ金具を取り外します。

(2) エアフィルタを取り出して水道水で水洗いし、十分に乾燥させます。汚れがひどいときは、中性洗剤を使用してください。

止めネジ

エアフィルタ

(3) エアフィルタをフィルタ押さえ金具で取り付けます。

162 ML-2050A/2051A/2150A

1. 異常表示と処置の方法

装置に異常が発生すると、操作パネルの画面に以下のような異常内容が表示されます。 ここでは、エラー No. 順に処置の方法を説明しています。異常発生時にはこの章をよく 読み、装置を点検・処置してください。

※不明な点がありましたら、お買い求めの販売店または当社までお問い合わせください。

⇒ 本取扱説明書に関連ページがある場合は参照ページを示しました。

No.	操作パネルの表示	高電 圧	異常 出力	処置
00	COMMUNICATION LINE ERROR (通信回線異常) - ー ー ー ー レーザ電源と操作パネル間の通信 近くにノイズの発生源があると け離すか、ノイズが発生しない さい。		レーザ電源と操作パネル間の通信回線異常です。 近くにノイズの発生源があるときは、できるだ け離すか、ノイズが発生しないようにしてくだ さい。	
01	POWER SUPPLY COVER OPENED (側面カバー・背面カバー開)	OFF	ON	側面カバー・背面カバーが外れているか、カバー の止めネジが緩んでいます。 カバーを取り付けてネジを締め直してください。
02	HEAD COVER OPENED (上面カバー・ランプ交換カバー開)	OFF	ON	上面カバー・ランプ交換カバーが外れているの で、取り付けてください。
03	EMERGENCY STOP (非常停止)	OFF	ON	非常停止が入力されました。 EMERGENCY STOP コネクタの非常停止入力 を閉路してください。また、操作パネルの EMERGENCY STOP ボタンを解除してください。

No.	操作パネルの表示	高電 圧	異常 出力	処置
04	COOLANT LOW LEVEL (水位不足)	OFF	ON	冷却水の量が不足しています。 冷却水を補給してください。また、装置が揺れ ると水位が変化することがあります。装置を安 定させてください。
08	DISCHARGE RESISTOR TEMP (放電抵抗温度異常)		ON	HV-ON/OFF を短時間で頻繁に繰り返すと発生す ることがあります。 放電抵抗が冷えるまでしばらく待ってから、 TROUBLE RESET ボタンを押してください。解 除されない場合は当社までご連絡ください。
	HIGH TEMPERATURE OF			空冷用の吸気口か排気口がふさがれていないか 確認してください。また、吸気口のエアフィル タを清掃してください。
10	COOLANT (冷却水温度過大)	OFF	ON	装置の前扉をしっかり閉めてください。
				周囲温度が 30℃を超えている場合は、30℃以 下に下げてください。→ P.39、59
11	LOW TEMPERATURE OF COOLANT (冷却水温度過小)	OFF	ON	電源投入時に、冷却水温度が上がるまで待って ください。設置環境の温度が低いときは、電源 を入れてから冷却水の温度が上がるまでに時間 がかかります。→ P.59
12	LOW FLOW RATE OF COOLANT (流量不足)	OFF	ON	冷却水の流量が不足しています。 レーザチャンバ内の金網部または水フィルタに ゴミがつまっています。ゴミを取り除いてくだ さい。
13	DEIONIZE TROUBLE (****M Ω •cm) (冷却水抵抗率異常)	OFF	ON	冷却水の純度が落ちています。 クーラを数十分間稼働させても異常が発生する ときは、イオン交換樹脂を交換してください。
14	SIMMER TROUBLE (予備放電異常)	OFF	ON	フラッシュランプに異常がないか確認し、異常 があればランプを交換してください。ランプを 交換しても直らない場合は、冷却水の抵抗値が 下がっていることも考えられます。冷却水絶縁 度異常での処置を行ってください。
15	CHARGE TROUBLE (充電異常)	OFF	ON	レーザ電源内のコンデンサへの充電に時間がか かりすぎたり、充電電圧が高くなりすぎたとき 発生します。 入力電源の容量が不足して電圧が落ちていない か、電源ケーブルが細すぎないか確認してくだ さい。
16	BANK ALARM (コンデンサバンク異常)	OFF	ON	レーザ電源内のコンデンサへの充電不足・過充 電・無電圧・過電圧が発生しました。 当社までご連絡ください。

1. 異常表示と処置の方法

No.	操作パネルの表示	高電 圧	異常 出力	処置
19 20 21	BRANCH SHUTTER 1 TROUBLE BRANCH SHUTTER 2 TROUBLE BRANCH SHUTTER 3 TROUBLE (分岐シャッタ 1、2、3 異常)	OFF	ON	分岐シャッタが動作中にスタート信号が入力されています。 ビーム選択信号を入力してからレーザスタート 信号を入力するまでの時間を、長くしてください。それでも異常が出る場合は、ロータリーソレノイド(駆動部品)の寿命が考えられますので、 交換してください。
29	DISCHARGE UNIT TEMP (放電ユニット温度異常)	OFF	ON	冷却用のファンモータが回っていないことが考 えられます。 ファンモータが回っていない場合は、当社まで ご連絡ください。
30	DISCHARGE UNIT OVERPOWER (放電ユニット過電力異常)	OFF	ON	レーザ発振の効率が悪くなっています。原因と して、ランプ寿命・発振ずれ・YAG ロッドやミラー の汚れ、およびパワーモニタユニットの故障が 考えられます。 ランプを交換しても異常が出る場合は、当社ま でご連絡ください。
31	BRANCH UNIT COVER OPENED (分岐部カバー開)	OFF	ON	分岐部カバーが外れているか、止めネジが緩ん でいます。 分岐部カバーを取り付けてネジを締めてください。
32	FIBER SWITCH TROUBLE (光ファイバ未接続)	OFF	ON	光ファイバが抜けているか、異常検出用のケー ブルが抜けています。→ P.86 確実に接続されているか確認してください。
33	E.INDICATOR TROUBLE (OUTPUT UNIT) (エミッションランプ異常)	OFF	ON	出射ユニット、操作パネルのエミッションラン
34	E.INDICATOR TROUBLE (PROGRAM UNIT) (エミッションランプ異常)	OFF	ON	- ノの _{英吊} ど 9 。→ P.86 当社までご連絡ください。
35	MEMORY BATTERY LOW (電池電圧低下)	_	ON	メモリバックアップ用のリチウム電池の電圧が 下がっています。 電池を交換してください。
38 39 40	FIBER SENSOR 1 TROUBLE FIBER SENSOR 2 TROUBLE FIBER SENSOR 3 TROUBLE (光ファイバ断線)	OFF	ON	ファイバケーブルの断線や端面の損傷が考えら れます。→ P.86 ケーブルが破損していないか確認してください。
44	EXTERNAL INTERLOCK OPENED (インタロック作動)		ON	REMOTE INTERLOCK コネクタが開路しました。 閉路してからトラブルリセット信号を入力する と、異常は解除されます。(「インタロック解除 の動作」P.167 を参照してください。)
45	LASER START IS NOT READY (充電未完了)	_	ON	充電未完了時にスタート信号が入っています。 スタート信号の入力間隔を長くしてください。

No.	操作パネルの表示	高電 圧	異常 出力	処置	
46	POWER MONITOR TEMP (パワーモニタユニット温度異常)	_	ON	パワーモニタユニットの異常が考えられます。 当社までご連絡ください。	
47	OVERRATE (使用率オーバー)	_	ON	フラッシュランプの投入電力がオーバーしています。 PEAK・パルス幅・REPEAT いずれかの設定値を 低くしてください。	
48	FIBER OVERRATE (光ファイバ許容値超過)		ON	光ファイバへの入射限界をオーバーしています。 → P.68 PEAK・パルス幅・REPEAT いずれかの設定値を 低くしてください。	
49	SETTING ERROR (TOO SHORT DURATION) (設定条件範囲外)	_	ON	パルス幅が 0.20ms 未満に設定されています。 パルス幅を 0.20ms 以上に設定してください。	
50	SETTING ERR (OVERLIMIT OF MAX PWR) (設定条件範囲外)	_	ON	出力条件の設定(PEAK・パルス幅・REPEAT) が最大能力を超えていることを示します。設定 値は、変更前の値に戻ります。	
51	FIBER SETTING ERROR (光ファイバ許容値超過)	_	ON	光ファイバへの出力条件設定(PEAK・パルス幅・ REPEAT)が最大能力を超えています。設定値は、 変更前の値に戻ります。→ P.68	
52	MEMORY TROUBLE (メモリ異常)	_	ON	メモリバックアップ用のリチウム電池の電圧が 下がっています。→ P.58 電池を交換してください。	
53	POWER FEEDBACK TROUBLE (パワーフィードバック システム異常)	_	ON	レーザパワーフィードバックのシステムに異常 が発生しました。 当社までご連絡ください。	
54	DEIONIZE CAUTION (****M Ω・cm) (冷却水抵抗率注意)	_	_	冷却水の純度が落ちています。 数十分間クーラを稼働させ、異常が発生すると きは、イオン交換樹脂カートリッジを交換して ください。	
56	OVERLIMIT OF LASER POWER (レーザパワー上限異常)	_	_	モニタ値がモニタ上限値を超えています。 モニタ上限設定値を確認してください。異常な モニタ値が表示される場合は、当社までご連絡 ください。	
57	UNDERLIMIT OF LASER POWER (レーザパワー下限異常)	_	_	モニタ値がモニタ下限値未満になっています。 モニタ下限設定値を確認してください。異常な モニタ値が表示される場合は、当社までご連絡 ください。	
59 60	BRANCH MIRROR 1 TROUBLE BRANCH MIRROR 2 TROUBLE (時間分岐ユニット 1、2 異常)	OFF	ON	時間分岐ユニットが動作中にスタート信号が入 力されています。 ビーム選択信号を入力してからレーザスタート 信号を入力するまでの時間を長くしてください。 それでも異常が出る場合は、ロータリーソレノ イド(駆動部品)の寿命が考えられますので、 交換してください。	

インタロック解除の動作

2. 異常が表示されない場合の処置

 装置の状態	処置
モニタ値は正常値を表示するが、レーザ出力は大きくなる。 (溶接状態に変化があった場合)	レーザ出力設定を調整してください。 調整してま改善されたい提合は 発振ずれたど
モニタ値は正常値を表示するが、レーザ出力は小さくなる。 (溶接状態に変化があった場合)	が考えられます。当社までご連絡ください。

仕様

		ML-2050A	ML-2051A	ML-2150A			
	最大定格出力	15W	7W	25W			
	最大出力エネルギー	15J/P (パルス幅 5ms)	7J/P (パルス幅 5ms)	25J/P (パルス幅 5ms)			
	最大ピークパワー	4kW	2.5kW	6kW			
発振器	パルス幅	標準 : 0.2 ~ 10.0ms(0.1ms ステップ) 設定切替により: 0.20 ~ 5.00ms(0.02ms ステップ)					
	パルス繰り返し速度	1 ~ 30pps					
	発振波長	1.064 μ m					
	位置決めガイド光	可視レーザ内蔵(赤色	2)				
	出力安定度 *1	± 3%					
	供給電源	単相 AC200V, 220V, 2	240V +10%, -15%, 50/6	0Hz			
	最大入力電流	7A					
雷源	最大皮相電力	1.4kVA					
电顺	ブレーカ容量 (お客様準備)	電源供給側には、高調波やサージ対応品で、定格電流が 15A 以上 の漏電遮断器をご使用になることを強くお勧めします。					
	接地	D種(接地抵抗1000	2以下)				
4 –	冷却方式	強制空冷					
クーラ	熱交換能力	850W (731kcal/h)					
	条件設定 (32 種類設定可能)	 ・レーザ出力波形 ・パワーモニタ ・繰り返し速度 ・繰り返し数 ・アラーム上下限値(エネルギーモニタ(J)) 					
操作パネル	モニタ	レーザエネルギー (J) 平均パワー (W)					
	カウンタ	総出力回数の表示 9 桁 良判定された出力回数の表示 9 桁					
	アラーム表示	液晶ディスプレイにメッセージ表示					
	周囲温度	5 ~ 30 °C					
使用環境	周囲湿度	85%RH 以下(結露なきこと) 〈注意〉周囲湿度上限値については、P.37 を参照してください。					
	質量	約 70kg					
ての他	外形寸法	700 (H) \times 310 (W) \times 665 (D) mm					

機種	1パルス当たりの出力エネルギー	ピークパワー
ML-2050A/2150A	5J 以上	1kW以上
ML-2051A	0.5J 以上	0.4kW以上

光ファイバ最小曲げ半径

コア径	最小曲げ半径	
φ 0.2、0.3、0.4mm	100mm	
φ 0.6mm	150mm	
φ 0.8mm	200mm	
φ 1.0mm	250mm	

光ファイバの最大入射レーザエネルギーおよびパワーの目安

下表は、光ファイバに入射できる最大レーザエネルギーおよびパワーの目安です。この 数値を超過しないように使用してください。

単一分岐または時間分岐の場合

同時2分岐では2分の1、同時3分岐では3分の1の数値となります。

コア径 ⁷	型式	ML-2050A	ML-2051A	ML-2150A
SI φ 0.2mm		_		
SI φ 0.3mm			7J、7W	_
SI φ 0.4、0.6、0.8、1.0m	ım	101, 1010		25J、25W

⇒ 光ファイバは SI 型をご使用ください。GI 型は使用できません。

外形寸法図

単位:mm

背面

使用可能出力

使用可能な上限出力は、ピークパワーとパルス幅(レーザ出力時間 ms)の設定によって 異なります。機種別にグラフで示します。

パルス幅が短い設定で最大定格出力を得る場合は、ピークパワーまたは繰り返しを上げ る必要があります。上限出力を超えないよう、パルス幅や繰り返しの条件を設定してく ださい。

機種別の仕様は以下のとおりです。

機種	ML-2050A	ML-2051A	ML-2150A
最大定格出力	15W	7W	25W
最大出力エネルギー	15J/P (パルス幅 5ms)	7J/P(パルス幅 5ms)	25J/P (パルス幅 5ms)
最大ピークパワー	4kW	2.5kW	6kW
パルス幅	標準:0.2 ~ 10.0ms(0.1ms ステップ) 設定切替により:0.20 ~ 5.00ms(0.02ms ステップ)		

- → グラフは参考値となります。フラッシュランプや装置の個体差、設定波形などにより異なります。
- ⇒ フラッシュランプをより長くご使用いただくには、以下のグラフの 80% 以下の設定 を推奨します。100% でも使用可能ですが、ランプ寿命や YAG ロッド用 0 リングな どの交換周期が短くなる可能性があります。

ML-2050A

タイムチャート

本装置に高電圧を入れ、レーザ光を出力してモニタ出力するまでのタイムチャートの例 を示します。それぞれ、装置の動作を縦軸に、時間の経過を横軸にして、各動作時の時 間経過による変化の状態や、一定の動作に要する時間を示しています。

以下の5種類のタイムチャートがありますので、参考にしてください。

同時2分岐

操作パネルによる動作時(PANEL CONTROL)

外部入力信号による動作時(EXTERNAL CONTROL)

時間2分岐

外部入力信号による動作時(EXTERNAL CONTROL)

繰り返し動作時(EXTERNAL CONTROL)

繰り返し動作(20pps以上)時(EXTERNAL CONTROL)

- ⇒ 制御方法の切り替えは EXT.I/O(1) コネクタの 23 番ピンの開路、閉路で行います。 操作パネルで制御する PANEL CONTROL にするときは開路し、外部入出力信号で制 御する EXTERNAL CONTROL にするときは閉路します。
- ⇒ レーザ光の出力と停止は、操作パネルの場合は LASER START/STOP ボタンを押す と出力し、再度押すと出力を停止します。外部入出力信号の場合は、EXT.I/O(1) コ ネクタの 21 番ピンを閉路すると出力が可能となり、開路すると出力を停止します。

同時 2 分岐 ... 操作パネルによる動作時 (PANEL CONTROL)

操作パネルで BEAM1 と BEAM2 に ON を設定して分岐シャッタを開き、入射ユニット 1、 2 から同時にレーザ光を出力した場合の時間経過を示します。

*1	最大 48s	充電時間。高電圧が入って充電が完了すると準備完了(READY!!)状 態となる。
*2	150ms以上	シャッタ動作時間。ビーム選択後、シャッタ作動のため一定時間後、 レーザスタート入力信号が入る。
*3	50ms	レーザ出力後、終了信号が出力される時間。
*4	50ms	レーザエネルギーが、設定してあるモニタ出力上限値(HIGH)およ び下限値(LOW)の範囲内かどうかを示す信号が出力される時間。

同時2分岐…外部入力信号による動作時(EXTERNAL CONTROL)

PLC などから信号を送り、条件信号入力、ビーム 1、2 を選択して分岐シャッタを開き、 入射ユニット 1、2 から同時にレーザ光を出力した場合の時間経過を示します。

*2、*4 は通常 16ms ですが、ディップスイッチの切り替えで短くすることができます。

時間2分岐…外部入力信号による動作時(EXTERNAL CONTROL)

PLC などから信号を送り、条件信号入力、ビーム 1、2 を選択して分岐シャッタを開き、 入射ユニット 1、2 から時間差をつけてレーザ光を出力した場合の時間経過を示します。

*1	最大 48s	充電時間。高電圧が入って充電が完了すると準備完了(READY!!)状態
		となる。
*2		条件信号の受付時間(条件信号入力条件確定までの時間)。
*3	150ms 以上	シャッタ動作時間。
*4		レーザスタート信号の受付時間(信号入力から出力までの時間)。
*5	50ms	レーザ出力後、終了信号が出力される時間。
*6	50ms	レーザエネルギーが、設定してあるモニタ出力上限値(HIGH)および
		下限値(LOW)の範囲内かどうかを示す信号が出力される時間。

*2、*4 は通常 16ms ですが、ディップスイッチの切り替えで短くすることができます。

概要編

繰り返し動作時(EXTERNAL CONTROL)

PLC などから信号を送り、条件信号入力、ビーム 1、2 を選択して分岐シャッタを開き、 入射ユニット 1、2 から同時に繰り返してレーザ光を出力した場合の時間経過を示します。

繰り返し動作(20pps 以上)時(EXTERNAL CONTROL)

20pps 以上の繰り返し出力回数でレーザ出力する場合の時間経過を示します。

*1	最大 48s	充電時間。高電圧が入って充電が完了すると準備完了(READY!!)状態 となる。
*2	150ms 以上	シャッタ動作時間。
*3	最小 33ms	モニタ異常出力時間。30ppsの場合の最小異常出力時間。

概要編

用語解説

レーザ溶接に関連した用語の解説です。一般的な用語と本装置特有の用語を含んでいま す。本取扱説明書に関連ページがある場合は参照ページを示しました。

◆アルファベット	
ACK (アック)	コンピュータ間の通信で使用する制御コード。送信先のコンピュータから送信元へ送 られる肯定的な返事。acknowledgement(肯定応答)の略。→ P.121
BCC	コンピュータ間の通信で使用する制御コード。通信文の各ブロックに伝送エラーを検 査するために付加するエラー検査文字。Block Check Character の略。→ P.121
COM (コモン)	共通線。回路や配線の中で、複数の箇所が共通して同じ箇所へ接続しているところを 指す。電気回路には A 接点、B 接点、コモンがあり、コモン接点はこれらの A、B 接 点に共通して通じている。common の略。
CPU 基板	装置の制御を行う CPU (Central Processing Unit 中央演算処理装置)を実装した配線板。
ETX	コンピュータ間の通信で使用する制御コード。→ P.121
FIX	本装置によるレーザ光の出力方法で、定型波形をいう。第1レーザ〜第3レーザの範 囲で出力時間と出力値を設定した、最大3分割で定型の波形となるレーザ光。→ P.60
FLEX	本装置によるレーザ光の出力方法で、任意波形をいう。Point1 ~ Point20 の範囲で各 ポイントの出力時間と出力値を設定した任意の波形となるレーザ光。→ P.62
GI	光ファイバの型式で Graded Index(グレーデッドインデックス)の略。GI 型は、マル チモード光ファイバ(MMF:Multi Mode optical Fiber)の中で、コア内の屈折率分布 がゆるやかに変化するものをいう。インデックスとは屈折率のこと。本装置で使用す る型式は、通常は SI(Step Index ステップインデックス)型。→ P.56
L	線路端子。外部回路の線路導体に接続される端子をいう。Live の略。→ P.41
N	中性点端子。回路の中性点に接続される端子をいう。Neutral の略。→ P.41
NAK (ナック)	コンピュータ間の通信で使用する制御コード。送信先のコンピュータから送信元へ送 られる否定的な返事。Negative Acknowledgment(否定応答)の略。→ P.121
Nd:YAG レーザ	イットリウム・アルミニウム・ガーネット(Yttrium・Aluminium・Garnet)結晶に、 ネオジウム (Nd) を添加して発生するレーザの名称。一般的に YAG レーザと呼ばれる。 波長 1064nm のレーザ光を発振する。YAG は Yttrium・Aluminium・Garnet の略。
PE	保護接地端子。機器を接地するために設けた端子をいう。Protective Earthの略。 → P.41
PLC	あらかじめプログラムした制御内容を逐次実行することによりシーケンス制御を行う 装置。シーケンサ(三菱電機の商品名)の名称で呼ばれることが多い。Programmable Logic Controller の略。
pps	1 秒間当たりのパルス数。pulse per second の略。
R	電源端子の記号。S とセットで使用される。U、V の場合もある。→ P.41

用語解説

RS-232C	米国電子工業会(EIA)によって標準化されたシリアル通信の規格。モデムなどのデー タ回線終端装置とパソコンなどのデータ端末装置を接続するために用いる。多種多様 な機器が対応しており、さまざまな分野で使用されている。Recommended Standard- 232C の略。→P.116
RS-485	米国電子工業会(EIA)によって標準化されたシリアル通信の規格。バス型のマル チポイント接続によって最大 32 台までの多対多接続に対応できる。Recommended Standard-485 の略。→ P.116
RxD	通信コネクタの信号線のうち受信データに対応するピン。→ P.116
S	電源端子の記号。R とセットで使用される。U、V の場合もある。→ P.41
SCHEDULE	本装置においてレーザ光の出力条件をいう。32 種類の SCHEDULE を設定し、 SCHEDULE 番号を付けて登録しておくことができる。→ P.54
SI	本装置で使用する光ファイバの型式で、Step Index(ステップインデックス)の略。SI 型は、マルチモード光ファイバ(MMF: Multi Mode optical Fiber)の中で、コア内の 屈折率分布が一様のものをいう。インデックスとは屈折率のこと。→P.56
sq(スクエア)	ケーブルの断面積を表す単位。平方ミリメートル。→ P.41
STX	コンピュータ間の通信で使用する制御コード。→ P.121
TxD	通信コネクタの信号線のうち送信データに対応するピン。→P.116
YAG ロッド	フラッシュランプで励起するレーザ媒質をいい、イットリウム、アルミニウム、ガーネッ トにネオジウムイオン(Nd3+)を添加した透明な結晶体が使用されている。本装置で はレーザチャンバの中に入っている。→ P.18、30
♦ あ	
イオン交換樹脂	接触する媒体(主に水)中のイオンを交換する合成樹脂。本装置では、冷却水が劣化 するにつれ発生するイオンを除去し、クリーン度を保っている。→ P.147
イオン交換水	イオン交換樹脂を通してイオン成分を除去した水。本装置の冷却水は、イオン交換水 または精製水を使用する。→ P.38
インタロック	危険な装置や設備がある場所に接近すると機械の動作を停止させるなど、危険防止の ための回路のこと。
◆か	
ガイド光	レーザ光の照射位置を確認し、位置調整するための補助光のこと。波長 380nm から 780nm の、人の目で見える光。可視光レーザともいう。本装置では、ガイド光発振器 で出力する。→ P.30
共振器ミラー	レーザ発振部の共振器を構成するミラー。本装置では、レーザチャンバで励起された 光が 2 つの共振器ミラー間で増幅されてレーザになる。→ P.30
コア径	光ファイバの中心部にある光を伝えるコア部分の外径。レーザ光の伝送や装置の特性 などからその値を決めることができる。→ P.43、67
高調波	基本周波数(50/60Hz)の波形に対して、その 3 ~ 40 倍の周波数の波形。→ P.41

付録

コモン	共通線。回路や配線の中で、複数の箇所が共通して同じ箇所へ接続しているところを 指す。電気回路には A 接点、B 接点、コモンがあり、コモン接点はこれらの A、B 接 点に共通して通じている。COM(common)のこと。
◆ さ	
サージ	電気回路などに瞬間的に加わる異常な過電圧や過電流。→P.41
シーケンサ	あらかじめプログラムした制御内容を逐次実行することによりシーケンス制御を行う PLC(Programmable Logic Controller)の一種で、三菱電機の商品名。
時間分岐	レーザ光の分岐仕様。内蔵された時間分岐ユニットのミラーの作動により、1 本の光 ファイバにレーザ光を出力する。本装置の時間分岐仕様に搭載されている。→ P.78
時間分岐ユニット	レーザを反射させるミラーを搭載したユニット。ミラーが作動して選択した光ファイ バヘレーザ光を出力する。本装置の時間分岐仕様において、レーザ発振部に内蔵され ている。→ P.31
出射ユニット	光ファイバによって伝送されたレーザ光をワークに出射するユニット。入射ユニット に接続した光ファイバを接続する。→ P.18、45
スタートビット	制御文字や記号などのデータごとに同期をとる非同期式通信方式において、データの 始まりを伝えるビット。文字の区切りを伝えるビットはストップビット。→ P.117
精製水	蒸留やろ過、イオン交換などの方法で精製された水。電気抵抗率 1 ~ 3M Ω・cm 程度 の水。本装置の冷却水は、イオン交換水または精製水を使用する。
接地	電気機器などと大地を電気的に接続すること。アース、グランドとも呼ばれる。
接地工事	「電気設備の技術基準解釈」第 18 条に規定されている。300V 以下の低圧の電路に接 続する機器の接地工事は D 種、300V を超える場合は C 種に従う。→ P.35
全二重	双方向通信において、同時に双方からデータを送信したり受信したりすることができ る通信方式のこと。本装置のデータ転送方式は、非同期式、全二重。→ P.117
◆ <i>ħ</i> 2	
単相	大きさおよび方向が周期的に変化する交流で、位相が同一の電気。電灯やコンセントの 100V 電源として使われる。
超純水	純度 100% の理論的な水 H ₂ O に限りなく近い水。厳しく品質管理されたイオン交換樹 脂、活性炭、メンブレンフィルタ、UF、UV などを組み合わせて処理され、基準としては、 抵抗率 16 ~ 17M Ω・cm 以上の純水をいう。
定格電流	連続的に出力できる交流最大の電流実効値。これを超える電流を連続的に流してはな らないことを示す。
定型波形	本装置によるレーザ光の出力方法で、FIX をいう。第 1 レーザ〜第 3 レーザの範囲で 出力時間と出力値を設定した、最大 3 分割で定型の波形となるレーザ光。→ P.60
抵抗率	物質に対して電流の流れにくさを示す尺度として一般的に用いられている電気抵抗で、 単位はΩ(オーム)。この抵抗を単位体積(1cm×1cm>1cm)当たりで示した値が体 積抵抗率で、単位はΩcm(オームセンチメートル)。

用語解説

ディップスイッチ	電子回路基板上に実装される電子機器の設定用スイッチ。スイッチのオン・オフを切り替えて機器の動作を制御する。本装置では 3 種類のディップスイッチが CPU 基板上 に配置されている。DIP switch は Dual In-line Package switch の略。→ P.80
データビット	非同期式通信で用いられる 1 文字のデータを表すビット。→ P.117
同時分岐	レーザ光の分岐仕様。分岐ミラーによって 1 本のレーザ光を複数に分割し、同時に複 数の光ファイバにレーザ光を出力する。→ P.78
◆ な	
入射ユニット	レーザ光を光ファイバに伝送するユニット。→P.30、44
任意波形	本装置によるレーザ光の出力方法で、FLEX をいう。Point1 ~ Point20 の範囲で各ポ イントの出力時間と出力値を設定した任意の波形となるレーザ光。→ P.62
◆ は	
発振器	レーザ溶接機においては、レーザを増幅・発振する機器をいう。レーザ媒質、励起源、 増幅器などから構成され、励起源によってレーザ媒質を励起しレーザを増幅・発振する。
パリティ	データ通信において、データの送受信が正しく行われたかを照合する方法。データ に付加されるビット情報またはパリティビットを使用してデータの誤りを検出する。 parity は奇偶(奇数と偶数)の意。
パリティビット	データ通信においてエラー検出のために元のデータに付加されるデータ。受信側では 得られたビット列の1または0の個数の奇偶を求めてパリティビットと照合し、誤り が生じているときはデータの再送や処理の中断などを行う。→ P.117
パルス幅	レーザ光を照射している時間のこと。
ピーク値	レーザ出力ピーク値のこと。本装置においては、SCHEDULE 画面で設定する「PEAK」 の値。→ P.55
ピークパワー	レーザ溶接においては、時間あたりのエネルギー量(パルスエネルギーをパルス幅で 割った値)を指し、単位は W(ワット)。
光ファイバ	石英ガラスやプラスチックの細い繊維で作られた、光を伝送するケーブル。中心部の コアと周囲を覆うクラッドで構成され、コア内を光が伝播していく。光の伝搬するモー ドの数によってマルチモードとシングルモードの2種類に分類され、さらに、マルチ モード光ファイバは、コアの屈折率分布によって、ステップインデックス (SI) とグレー デッドインデックス (GI) に分けられる。
非同期式	送信タイミングと受信タイミングが一致していない通信方式。同期式ではデータ送出 の際タイミング情報も送信し受信側はそのタイミング情報を使って受信するが、非同 期式の場合はデータだけを送受信する。
フォト MOS リレー	駆動側に発光ダイオード、接点に MOS(Metal-Oxide Semiconductor:金属酸化膜半 導体)FET (Field-Effect Transistor:電界効果トランジスタ)を採用した完全固体リレー。 → P.102

フラッシュランプ	レーザ発振器の中にある励起ランプ。フラッシュランプが点灯し、YAG ロッドを励起 してレーザを発生させる。→ P.18、30、152
分岐シャッタ	レーザ発振部に内蔵されているレーザ光を遮断するシャッタ。分岐シャッタを開く設 定によって、レーザ光が出力される。→ P.31、66
分岐ミラー	レーザ発振部に内蔵されているレーザ光を反射するためのミラー。→ P.31、78
保護メガネ	レーザ光から目を保護するためにかける保護メガネ。レーザの波長により種類が分か れている。
♦ 5	
リモートインタロック	レーザ機器を安全に使用する対策として、非常時にレーザ出力を遮断するのためのイ ンタロック機能。本装置では、REMOTE INTERLOCK コネクタを部屋のドアなどに接 続し、ドアが開けられたときレーザ光を遮断することなどができる。→ P.98
励起	原子の周りの電子が、基底状態と呼ばれる状態から1つ上の状態に移行する現象。レー ザにおいては、レーザ媒質内の原子や分子が外からエネルギーを与えられ、エネルギー の低い状態からエネルギーの高い状態へ移行することをいう。
レーザ	LASER は Light Amplification by Stimulated Emission of Radiation(放射の誘導放出に よる光の増幅)の頭文字で、レーザ発振器で人工的に作られる光。媒体により、固体レー ザ、液体レーザ、ガスレーザなどがあり、YAG レーザは固体レーザの代表的なもの。
レーザ安全管理者	レーザの危険性の評価と安全管理を遂行するために十分な知識をもち、レーザの安全 管理に対して責任を負う者。JIS C 6802「レーザ製品の安全基準」でクラス 3B を超え るレーザ製品が運転される施設または場所については、レーザ安全管理者を任命し管 理区域を設ける必要がある。レーザ溶接機のほとんどは最も危険なクラス 4 に該当す るため、レーザ安全管理者を任命する。→ P.9
レーザ光	レーザ発振器を用いて人工的に作られる光。電子機器、光通信、医療、金属加工など の分野で幅広く使用されている。レーザ光は直進し、波長が一定で、位相(波の山と谷) が同一という特長があるため、1点に集光して高いエネルギーを得ることができる。
レーザチャンバ	レーザ発振容器をいう。内部にフラッシュランプと YAG ロッドが入っている。レーザ 発振器の一部分。→ P.30
レーザパワーフィードバック	本装置で採用されている制御機能。出力したレーザエネルギーの測定値と平均パワー が入力側に戻されるため、レーザ出力後、ただちに確認することができる。
漏電遮断器	電源から接地への漏洩電流を検出した際に回路を遮断する安全装置。
◆ わ	
ワークディスタンス	レーザ光の出射位置からレーザ溶接対象物(ワーク)までの距離。

出力条件データ記入表[FORM:FIX]-1

]
	15													
	14													
	13													
	12													
	11													
	10													
	60													
OULE	08													
SCHED	07													
	00													
	05													
	04													
	03													
	02													
	01													
	00													
No.	单位	ms	ms	%	ms	%	ms	%	ms	κγ	sdd		ſ	7
記守新田	或 た 聖 四 -	$00.0 \sim 10.0$	$00.0\sim 10.0$	$000.0\sim 200.0$	$00.0 \sim 10.0$	$000.0\sim 200.0$	$00.0 \sim 10.0$	$000.0\sim 200.0$	$00.0 \sim 10.0$	$\begin{array}{c} 00.00 \sim 04.00 \ 00.00 \sim 02.50 \ 00.00 \sim 02.50 \ 00.00 \sim 06.00 \end{array}$	$00 \sim 30$	$6666\sim 0000$	$000.0\sim 999.9$	$0.00.0 \sim 999.9$
		TIME	TIME	%	TIME	%	TIME	%	TIME	2050A: 2051A: 2150A:	Ŀ		HIGH	LOW
日 五 日 五	- Jacope		EI ASLI						SLOPE	PEAK ML.: ML.:	REPEA	SHOT		

出力条件データ記入表

付録

 	Ē	JACOPE		FLASH1		FLAOH2		FLAOH3	SLOPE	PEA	Σ	Σ	Σ	REPE	SHC		
	Π	TIME	TIME	%	TIME	%	TIME	%	TIME	, X			2150A:	EAT	DT	HIGH	LOW
<u></u> 	較、正則、西	$00.0 \sim 10.0$	$00.0 \sim 10.0$	$000.0\sim 200.0$	$00.0 \sim 10.0$	$000.0\sim 200.0$	$00.0 \sim 10.0$	$000.0\sim 200.0$	$00.0 \sim 10.0$		$00.00\sim04.00$	$00.00\sim 02.50$	$00.00\sim 06.00$	$00 \sim 30$	$6666\sim 0000$	$000.0\sim 999.9$	$0.00.0 \sim 999.9$
No.	単位	sm	sm	%	sm	%	sm	%	sm		14141	N N N		sdd		_ ٦	ſ
	16																
	17																
	18																
	19																
	20																
	21																
	22																
SCHE	23																
DULE	24																
	25																
	26																
	27																
	28																
	29																
	30																
	31																

出力条件データ記入表 [FORM:FIX] -2

NETWORK #

188 ML-2050A/2051A/2150A

出力条件データ記入表[FORM:FLEX]-1

ЦШ		設守結開	NO.	SCHEDULE (No. ほ目田にこ記人ください)
Ψ			単位	
	TIME	$00.0 \sim 10.0$	sm	
	%	$000.0\sim 200.0$	%	
	TIME	$00.0 \sim 10.0$	sm	
	%	$000.0\sim 200.0$	%	
	TIME	$00.0 \sim 10.0$	sm	
	%	$000.0\sim 200.0$	%	
	TIME	$00.0 \sim 10.0$	ms	
	%	$000.0\sim 200.0$	%	
	TIME	$00.0 \sim 10.0$	ms	
	%	$000.0\sim 200.0$	%	
PEAK				
ML-2	:050A:	$00.00\sim04.00$		
ML-2	:051A:	$00.00 \sim 02.50$	× V	
ML-2	:150A:	$00.00\sim 00.00$		
REPEA ⁻	 	$00 \sim 30$	sdd	
SHOT		$6666 \sim 0000$		
	HIGH	$000.0\sim 999.9$	-	
	LOW	$000.0 \sim 999.9$	٦	

出力条件データ記入表 [FORM:FLEX] -2

NETWORK #

190 ML-2050A/2051A/2150A

索引

A

ALARM 59 AVERAGE 57

B

BEAM 56, 66, 80

С

CHANGE VALUE 72 CONTROL キースイッチ 28 CURSOR キー 29,88

D

DEIONZE 90

E

EMERGENCY STOP ボタン 28 EMISSION ランプ 29.88 ENERGY 57 ENTER キー 29,88 EXTERNAL CONTROL 51,65 EMERGENCY STOP コネクタ 26,105 EXT.I/O(1) コネクタ 26,99 EXT.I/O(1) コネクタ出力用ピン 102 EXT.I/O(1) コネクタ入力用ピン 100 EXT.I/O(2) コネクタ 26,103 EXT.I/O(2) コネクタ出力用ピン 104 EXT.I/O(2) コネクタ入力用ピン 103 PLC 97 REMOTE INTERLOCK コネクタ 27,106 外部出力信号接続例 109 外部入力信号接続例 107 コネクタ 98 接続 98

F

FIBER 56 FIX 54,61 FLASH 55, 61 FLEX 54, 63 FORM 54, 61

G

GI 56 GOOD COUNT 58, 66, 67

H

HIGH 57,69 HIGH VOLTAGE ランプ 29 HV 55

Ι

INITIALIZE 58 INITIAL 画面 58, 74, 76

L

LAMP INPUT PWR 58 LASER CONTROLLER コネクタ 27,46 LASER POWER MONITOR 90 LASER START/STOP ボタン 29,88 LOW 57,69

M

MAIN POWER スイッチ 25 MENU キー 29,88

Ν

NETWORK# 59

0

OFF(-) キー 29,88 ON(+) キー 29,88

P

PANEL CONTROL 51,65 PANEL CONTROL コネクタ 27 PASSWORD 71 PASSWORD 画面 71 PEAK 55, 61 Point 55, 63 POSI.BLINK 56 POSITION 56 POSITION AUTO OFF 59 POWER MONITOR 画面 57, 69 POWER ランプ 28 PRESET 56, 67 \rightarrow GOOD 56 \rightarrow SHOT 56 PRINTOUT MODE 137, 139

R

READY ランプ 29 REFERENCE SET 58, 70 REPEAT 55.62 RESET SELECT 56, 66 \rightarrow GOOD 56 \rightarrow SHOT 56 RS-485 CONTROL 52, 66 RS-232C/RS-485 変換アダプタ 23,47 RS-485(1) コネクタ 26 RS-485(2) コネクタ 26 異常内容一覧 135 コード一覧表 121 制御コード 121 接続 116 設定値・モニタ値一覧 125 通信条件 117

S

-SCH.# 54 SCHEDULE 画面 54,61 SCHEDULE 番号 54 SHOT 55,62 SHOT COUNT 57,66,67 SHUTTER ランプ 29 SI 56 SIGNAL コネクタ 26 ~SLOPE 55,62 →SLOPE 55,62 -STATUS 56 STATUS 画面 56,65 SW1 59 SW2 60 SW3 60

Т

TEMP CONT 59 TROUBLE RESET キー 29,88

W

WATER 56, 90 WATER TEMPERATURE 90

Y

YAG ロッド 18,38

い

イオン交換器 27,148 イオン交換樹脂 148

う

受付時間 84

え

エアフィルタ 32,146,162 エラー No. 163

お

オプション品 22

か

ガイド光 56,59 ガイド光折り返しミラー 30 ガイド光発振器 30

き

共振器ミラーホルダ 30

け

警告・危険シール 12 ケーブル取入口 28

ι

時間分岐 18,78 時間分岐ユニット 31,78,79,82 出射ユニット 157 ファイバセンサ付き出射ユニット 85 条件信号受付時間 83

す

水位ラベル 27

せ

接地工事 35

そ

操作パネル 29,88

7

定型波形 54,61 電源入力端子 26,41

と

同時分岐 18,78

に

入射ユニット 30,44 任意波形 54,63

は

パスワード 71 パルス幅 設定範囲 76 パワーモニタユニット 30

ひ

光ファイバ LED 点灯確認機能 86 クリーニング 158 コア径 56,68 最大入射レーザエネルギー 44 接続方法 43 入射調整 157 最小曲げ半径 9,43 光ファイバ取入口 28 ファイバ装着確認機能 86 ファイバ破断検出機能 86

ふ

ファイバスコープ 22 付属品 20 フラッシュランプ 30, 38, 153 ランプ投入電力 58, 70 プリンタ 24 分岐 78 ディップスイッチ 80 分岐シャッタ独立制御 81 分岐仕様 78, 80 分岐シャッタ 31, 56, 66, 79, 80, 82 分岐ミラー 31, 78, 79

ほ

保守部品 143 本体外形・寸法 173

み

水抜き 147,152 水フィルタ 151

り

リチウム電池 160,161

れ

冷却水 38,42 制御温度 59 能力 39 冷却水タンク 27,147 レーザ安全管理者 9 レーザ光 1秒間の出力回数 55,62 アップスロープ 55,62

グラフ表示 54,62,64 出力時間 55,61,76 出力值 55,61 総出力回数 55,62 ダウンスロープ 55,62 定型波形 54,61 任意波形 54,63 ポイント 55,63 レーザ出力エネルギー 55 レーザ出力ピーク値 55,61 レーザ光 (モニタ) 上限値と下限値 57,69 総出力回数 57,66,67 測定值 57,69 適正出力回数 58,66,67 平均パワー 57 ランプ投入電力 58 レーザコントローラ 23,46,88 LASER CONTROLLER コネクタ 27 短絡ケーブル 27 レーザスタート信号受付時間 83 レーザチャンバ 30,152